Artificial Intelligence Tools for Cyber Attribution (SpringerBriefs in Computer Science)
暫譯: 網路歸因的人工智慧工具 (SpringerBriefs in Computer Science)
Eric Nunes
- 出版商: Springer
- 出版日期: 2018-02-27
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 100
- 裝訂: Paperback
- ISBN: 3319737872
- ISBN-13: 9783319737874
-
相關分類:
人工智慧、Computer-Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
This SpringerBrief discusses how to develop intelligent systems for cyber attribution regarding cyber-attacks. Specifically, the authors review the multiple facets of the cyber attribution problem that make it difficult for “out-of-the-box” artificial intelligence and machine learning techniques to handle.
Attributing a cyber-operation through the use of multiple pieces of technical evidence (i.e., malware reverse-engineering and source tracking) and conventional intelligence sources (i.e., human or signals intelligence) is a difficult problem not only due to the effort required to obtain evidence, but the ease with which an adversary can plant false evidence.
This SpringerBrief not only lays out the theoretical foundations for how to handle the unique aspects of cyber attribution – and how to update models used for this purpose – but it also describes a series of empirical results, as well as compares results of specially-designed frameworks for cyber attribution to standard machine learning approaches.
Cyber attribution is not only a challenging problem, but there are also problems in performing such research, particularly in obtaining relevant data. This SpringerBrief describes how to use capture-the-flag for such research, and describes issues from organizing such data to running your own capture-the-flag specifically designed for cyber attribution. Datasets and software are also available on the companion website.
商品描述(中文翻譯)
這本SpringerBrief討論了如何針對網路攻擊開發智能系統以進行網路歸因。具體而言,作者回顧了網路歸因問題的多個面向,這些面向使得“即插即用”的人工智慧和機器學習技術難以應對。
通過使用多個技術證據(即,惡意軟體反向工程和來源追蹤)以及傳統情報來源(即,人力或信號情報)來歸因網路行動是一個困難的問題,這不僅是因為獲取證據所需的努力,還因為對手可以輕易地植入虛假證據。
這本SpringerBrief不僅闡述了如何處理網路歸因的獨特方面的理論基礎——以及如何更新用於此目的的模型——還描述了一系列實證結果,並將專門設計的網路歸因框架的結果與標準機器學習方法進行比較。
網路歸因不僅是一個具有挑戰性的問題,還在進行此類研究時存在問題,特別是在獲取相關數據方面。這本SpringerBrief描述了如何使用Capture-the-Flag進行此類研究,並說明了從組織這些數據到運行專門為網路歸因設計的Capture-the-Flag的問題。數據集和軟體也可在伴隨網站上獲得。