Machine Learning for Ecology and Sustainable Natural Resource Management
暫譯: 生態學與可持續自然資源管理的機器學習
- 出版商: Springer
- 出版日期: 2018-11-13
- 售價: $9,810
- 貴賓價: 9.5 折 $9,320
- 語言: 英文
- 頁數: 441
- 裝訂: Hardcover
- ISBN: 3319969765
- ISBN-13: 9783319969763
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
商品描述
Ecologists and natural resource managers are charged with making complex management decisions in the face of a rapidly changing environment resulting from climate change, energy development, urban sprawl, invasive species and globalization. Advances in Geographic Information System (GIS) technology, digitization, online data availability, historic legacy datasets, remote sensors and the ability to collect data on animal movements via satellite and GPS have given rise to large, highly complex datasets. These datasets could be utilized for making critical management decisions, but are often “messy” and difficult to interpret. Basic artificial intelligence algorithms (i.e., machine learning) are powerful tools that are shaping the world and must be taken advantage of in the life sciences. In ecology, machine learning algorithms are critical to helping resource managers synthesize information to better understand complex ecological systems. Machine Learning has a wide variety of powerful applications, with three general uses that are of particular interest to ecologists: (1) data exploration to gain system knowledge and generate new hypotheses, (2) predicting ecological patterns in space and time, and (3) pattern recognition for ecological sampling. Machine learning can be used to make predictive assessments even when relationships between variables are poorly understood. When traditional techniques fail to capture the relationship between variables, effective use of machine learning can unearth and capture previously unattainable insights into an ecosystem's complexity. Currently, many ecologists do not utilize machine learning as a part of the scientific process. This volume highlights how machine learning techniques can complement the traditional methodologies currently applied in this field.
商品描述(中文翻譯)
生態學家和自然資源管理者面臨著在氣候變遷、能源開發、城市擴張、入侵物種和全球化等快速變化的環境中做出複雜的管理決策。地理資訊系統(Geographic Information System, GIS)技術的進步、數位化、線上數據的可用性、歷史遺留數據集、遙感器以及通過衛星和GPS收集動物移動數據的能力,促成了大型且高度複雜的數據集的產生。這些數據集可以用於做出關鍵的管理決策,但往往是“雜亂無章”的,且難以解釋。基本的人工智慧算法(即機器學習)是塑造世界的強大工具,必須在生命科學中加以利用。在生態學中,機器學習算法對於幫助資源管理者綜合信息以更好地理解複雜的生態系統至關重要。機器學習有各種強大的應用,對生態學家特別感興趣的三個一般用途是:(1)數據探索以獲得系統知識並生成新假設,(2)預測空間和時間中的生態模式,以及(3)生態取樣的模式識別。即使在變數之間的關係尚不明確時,機器學習也可以用來進行預測評估。當傳統技術無法捕捉變數之間的關係時,機器學習的有效使用可以挖掘並捕捉到生態系統複雜性中以前無法獲得的見解。目前,許多生態學家並未將機器學習作為科學過程的一部分。本書強調了機器學習技術如何補充目前在該領域應用的傳統方法。