Machine Learning for Evolution Strategies (Studies in Big Data)
暫譯: 進化策略的機器學習(大數據研究)

Oliver Kramer

  • 出版商: Springer
  • 出版日期: 2018-05-30
  • 售價: $4,550
  • 貴賓價: 9.5$4,323
  • 語言: 英文
  • 頁數: 124
  • 裝訂: Paperback
  • ISBN: 3319815008
  • ISBN-13: 9783319815008
  • 相關分類: 大數據 Big-dataMachine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.

商品描述(中文翻譯)

本書介紹了兩個領域之間的多種算法混合,展示了機器學習如何改善和支持進化策略。這組方法包括協方差矩陣估計、適應度和約束函數的元模型、用於搜索和可視化高維優化過程的降維技術,以及基於聚類的利基策略。在介紹進化策略和機器學習之後,本書從算法和實驗的角度搭建了兩者之間的橋樑。實驗主要使用 (1+1)-ES,並使用機器學習庫 scikit-learn 在 Python 中實現。這些例子針對典型的基準問題,說明了算法概念及其實驗行為。本書最後討論了相關的研究方向。

最後瀏覽商品 (20)