Machine Learning for Evolution Strategies (Studies in Big Data)
暫譯: 進化策略的機器學習(大數據研究)
Oliver Kramer
- 出版商: Springer
- 出版日期: 2018-05-30
- 售價: $4,550
- 貴賓價: 9.5 折 $4,323
- 語言: 英文
- 頁數: 124
- 裝訂: Paperback
- ISBN: 3319815008
- ISBN-13: 9783319815008
-
相關分類:
大數據 Big-data、Machine Learning
海外代購書籍(需單獨結帳)
商品描述
This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.
商品描述(中文翻譯)
本書介紹了兩個領域之間的多種算法混合,展示了機器學習如何改善和支持進化策略。這組方法包括協方差矩陣估計、適應度和約束函數的元模型、用於搜索和可視化高維優化過程的降維技術,以及基於聚類的利基策略。在介紹進化策略和機器學習之後,本書從算法和實驗的角度搭建了兩者之間的橋樑。實驗主要使用 (1+1)-ES,並使用機器學習庫 scikit-learn 在 Python 中實現。這些例子針對典型的基準問題,說明了算法概念及其實驗行為。本書最後討論了相關的研究方向。