Bin-Picking: New Approaches for a Classical Problem
暫譯: 撿箱:經典問題的新方法
Buchholz, Dirk
- 出版商: Springer
- 出版日期: 2019-03-29
- 售價: $4,510
- 貴賓價: 9.5 折 $4,285
- 語言: 英文
- 頁數: 117
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3319799630
- ISBN-13: 9783319799636
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book is devoted to one of the most famous examples of automation handling tasks - the "bin-picking" problem. To pick up objects, scrambled in a box is an easy task for humans, but its automation is very complex. In this book three different approaches to solve the bin-picking problem are described, showing how modern sensors can be used for efficient bin-picking as well as how classic sensor concepts can be applied for novel bin-picking techniques. 3D point clouds are firstly used as basis, employing the known Random Sample Matching algorithm paired with a very efficient depth map based collision avoidance mechanism resulting in a very robust bin-picking approach. Reducing the complexity of the sensor data, all computations are then done on depth maps. This allows the use of 2D image analysis techniques to fulfill the tasks and results in real time data analysis. Combined with force/torque and acceleration sensors, a near time optimal bin-picking system emerges. Lastly, surface normal maps are employed as a basis for pose estimation. In contrast to known approaches, the normal maps are not used for 3D data computation but directly for the object localization problem, enabling the application of a new class of sensors for bin-picking.
商品描述(中文翻譯)
這本書專注於自動化處理任務的最著名範例之一——「箱內撿取」問題。對於人類來說,從一個盒子中撿起雜亂的物體是一項簡單的任務,但其自動化卻非常複雜。本書描述了三種不同的方法來解決箱內撿取問題,展示了現代感測器如何用於高效的箱內撿取,以及如何將經典的感測器概念應用於新穎的箱內撿取技術。首先使用3D點雲作為基礎,採用已知的隨機樣本匹配(Random Sample Matching)演算法,並結合一個非常高效的深度圖基礎的碰撞避免機制,從而形成一種非常穩健的箱內撿取方法。通過降低感測器數據的複雜性,所有計算都在深度圖上進行。這使得可以使用2D影像分析技術來完成任務,並實現實時數據分析。結合力/扭矩和加速度感測器,出現了一個接近時間最優的箱內撿取系統。最後,表面法線圖被用作姿態估計的基礎。與已知的方法相比,法線圖並不是用於3D數據計算,而是直接用於物體定位問題,從而使得一類新型感測器能夠應用於箱內撿取。