Computational Methods in Physics: Compendium for Students (Graduate Texts in Physics)
暫譯: 物理中的計算方法:學生手冊(研究生物理學文本)
Simon Širca, Martin Horvat
- 出版商: Springer
- 出版日期: 2018-07-24
- 售價: $6,430
- 貴賓價: 9.5 折 $6,109
- 語言: 英文
- 頁數: 880
- 裝訂: Hardcover
- ISBN: 3319786180
- ISBN-13: 9783319786186
-
相關分類:
物理學 Physics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book is intended to help advanced undergraduate, graduate, and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues, as well as optimization of program execution speeds. Numerous examples are given throughout the chapters, followed by comprehensive end-of-chapter problems with a more pronounced physics background, while less stress is given to the explanation of individual algorithms. The readers are encouraged to develop a certain amount of skepticism and scrutiny instead of blindly following readily available commercial tools.
The second edition has been enriched by a chapter on inverse problems dealing with the solution of integral equations, inverse Sturm-Liouville problems, as well as retrospective and recovery problems for partial differential equations. The revised text now includes an introduction to sparse matrix methods, the solution of matrix equations, and pseudospectra of matrices; it discusses the sparse Fourier, non-uniform Fourier and discrete wavelet transformations, the basics of non-linear regression and the Kolmogorov-Smirnov test; it demonstrates the key concepts in solving stiff differential equations and the asymptotics of Sturm-Liouville eigenvalues and eigenfunctions. Among other updates, it also presents the techniques of state-space reconstruction, methods to calculate the matrix exponential, generate random permutations and compute stable derivatives.
商品描述(中文翻譯)
本書旨在幫助高年級本科生、研究生及博士後研究人員在日常工作中,提供一部數值方法的彙編。所選擇的方法特別關注誤差估計、穩定性和收斂性問題,以及程式執行速度的優化。全書各章中提供了大量範例,並附有全面的章末問題,這些問題更強調物理背景,而對於個別演算法的解釋則相對較少。鼓勵讀者培養一定的懷疑精神和批判性思維,而不是盲目跟隨現成的商業工具。
第二版新增了一章關於逆問題,涉及積分方程的解、逆Sturm-Liouville問題,以及偏微分方程的回顧和恢復問題。修訂後的文本現在包括稀疏矩陣方法的介紹、矩陣方程的解以及矩陣的偽譜;討論了稀疏傅立葉變換、不均勻傅立葉變換和離散小波變換,非線性回歸的基本概念以及Kolmogorov-Smirnov檢驗;展示了解決剛性微分方程的關鍵概念以及Sturm-Liouville特徵值和特徵函數的漸近性。除了其他更新外,還介紹了狀態空間重建的技術、計算矩陣指數的方法、生成隨機排列和計算穩定導數的方法。