Deep Neural Networks in a Mathematical Framework (SpringerBriefs in Computer Science)
暫譯: 數學框架中的深度神經網絡 (計算機科學斯普林格簡報)
Anthony L. L. Caterini
- 出版商: Springer
- 出版日期: 2018-04-03
- 售價: $2,990
- 貴賓價: 9.5 折 $2,841
- 語言: 英文
- 頁數: 100
- 裝訂: Paperback
- ISBN: 3319753037
- ISBN-13: 9783319753034
-
相關分類:
Computer-Science
海外代購書籍(需單獨結帳)
商品描述
This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks. Furthermore, the authors developed framework is both more concise and mathematically intuitive than previous representations of neural networks.
This SpringerBrief is one step towards unlocking the black box of Deep Learning. The authors believe that this framework will help catalyze further discoveries regarding the mathematical properties of neural networks.This SpringerBrief is accessible not only to researchers, professionals and students working and studying in the field of deep learning, but also to those outside of the neutral network community.
商品描述(中文翻譯)
這本SpringerBrief描述了如何建立一個嚴謹的端到端數學框架,用於深度神經網絡。作者提供了工具來表示和描述神經網絡,將該領域的先前結果以更自然的方式呈現。特別是,作者以統一的方式推導了多種神經網絡結構的梯度下降算法,包括多層感知器(multilayer perceptrons)、卷積神經網絡(convolutional neural networks)、深度自編碼器(deep autoencoders)和遞迴神經網絡(recurrent neural networks)。此外,作者所開發的框架比以往的神經網絡表示更簡潔且數學上更直觀。
這本SpringerBrief是解開深度學習「黑箱」的一步。作者相信,這個框架將有助於催化對神經網絡數學特性的進一步發現。這本SpringerBrief不僅對從事和學習深度學習領域的研究人員、專業人士和學生可及,對於那些不在神經網絡社群中的人也同樣適用。