Spatial Big Data Science: Classification Techniques for Earth Observation Imagery
暫譯: 空間大數據科學:地球觀測影像的分類技術
Zhe Jiang, Shashi Shekhar
- 出版商: Springer
- 出版日期: 2017-07-21
- 售價: $5,640
- 貴賓價: 9.5 折 $5,358
- 語言: 英文
- 頁數: 131
- 裝訂: Hardcover
- ISBN: 3319601946
- ISBN-13: 9783319601946
-
相關分類:
大數據 Big-data、Data Science
海外代購書籍(需單獨結帳)
商品描述
Emerging Spatial Big Data (SBD) has transformative potential in solving many grand societal challenges such as water resource management, food security, disaster response, and transportation. However, significant computational challenges exist in analyzing SBD due to the unique spatial characteristics including spatial autocorrelation, anisotropy, heterogeneity, multiple scales and resolutions which is illustrated in this book.
This book also discusses current techniques for, spatial big data science with a particular focus on classification techniques for earth observation imagery big data. Specifically, the authors introduce several recent spatial classification techniques, such as spatial decision trees and spatial ensemble learning. Several potential future research directions are also discussed.
This book targets an interdisciplinary audience including computer scientists, practitioners and researchers working in the field of data mining, big data, as well as domain scientists working in earth science (e.g., hydrology, disaster), public safety and public health. Advanced level students in computer science will also find this book useful as a reference.
商品描述(中文翻譯)
新興的空間大數據(Spatial Big Data, SBD)在解決許多重大的社會挑戰方面具有變革潛力,例如水資源管理、糧食安全、災害應對和交通運輸。然而,由於其獨特的空間特徵,包括空間自相關、各向異性、異質性以及多重尺度和解析度,分析 SBD 時存在著顯著的計算挑戰,本書將對此進行說明。
本書還討論了當前的空間大數據科學技術,特別關注於地球觀測影像大數據的分類技術。具體而言,作者介紹了幾種近期的空間分類技術,例如空間決策樹和空間集成學習。書中還討論了幾個潛在的未來研究方向。
本書的目標讀者為跨學科的群體,包括計算機科學家、數據挖掘和大數據領域的從業者及研究人員,以及從事地球科學(例如水文學、災害)、公共安全和公共健康的領域科學家。計算機科學的高級學生也會發現本書作為參考資料非常有用。