Reverse Hypothesis Machine Learning: A Practitioner's Perspective (Intelligent Systems Reference Library)
暫譯: 反向假設機器學習:實務者的視角(智能系統參考文獻庫)

Parag Kulkarni

  • 出版商: Springer
  • 出版日期: 2017-04-06
  • 售價: $5,260
  • 貴賓價: 9.5$4,997
  • 語言: 英文
  • 頁數: 138
  • 裝訂: Hardcover
  • ISBN: 3319553119
  • ISBN-13: 9783319553115
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

This book introduces a paradigm of reverse hypothesis machines (RHM), focusing on knowledge innovation and machine learning. Knowledge- acquisition -based learning is constrained by large volumes of data and is time consuming. Hence Knowledge innovation based learning is the need of time. Since under-learning results in cognitive inabilities and over-learning compromises freedom, there is need for optimal machine learning. All existing learning techniques rely on mapping input and output and establishing mathematical relationships between them. Though methods change the paradigm remains the same―the forward hypothesis machine paradigm, which tries to minimize uncertainty. The RHM, on the other hand, makes use of uncertainty for creative learning. The approach uses limited data to help identify new and surprising solutions. It focuses on improving learnability, unlike traditional approaches, which focus on accuracy. The book is useful as a reference book for machine learning researchers and professionals as well as machine intelligence enthusiasts. It can also used by practitioners to develop new machine learning applications to solve problems that require creativity.

商品描述(中文翻譯)

本書介紹了一種反向假設機器(RHM)的範式,專注於知識創新和機器學習。基於知識獲取的學習受到大量數據的限制,且耗時。因此,基於知識創新的學習是當前的需求。由於學習不足會導致認知能力不足,而學習過度則會妨礙自由,因此需要最佳化的機器學習。所有現有的學習技術都依賴於映射輸入和輸出,並建立它們之間的數學關係。儘管方法有所改變,但範式仍然不變——前向假設機器範式,旨在最小化不確定性。另一方面,RHM則利用不確定性進行創造性學習。這種方法使用有限的數據來幫助識別新的和令人驚訝的解決方案。它專注於提高可學習性,與傳統方法專注於準確性不同。本書對於機器學習研究人員和專業人士以及機器智能愛好者來說,都是一本有用的參考書。實務工作者也可以利用本書來開發新的機器學習應用,以解決需要創造力的問題。