Information Science for Materials Discovery and Design (Springer Series in Materials Science)
暫譯: 材料發現與設計的信息科學(斯普林格材料科學系列)

  • 出版商: Springer
  • 出版日期: 2015-12-28
  • 售價: $9,810
  • 貴賓價: 9.5$9,320
  • 語言: 英文
  • 頁數: 307
  • 裝訂: Hardcover
  • ISBN: 3319238701
  • ISBN-13: 9783319238708
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a “fourth leg’’ to our toolkit to make the “Materials Genome'' a reality, the science of Materials Informatics.

商品描述(中文翻譯)

這本書探討了一種以資訊為驅動的材料發現與設計規劃方法,並強調迭代學習。作者提出了對比但互補的方法,例如基於高通量計算、組合實驗或數據驅動發現的方法,並結合機器學習技術。同樣地,成功應用於其他領域(如生物科學)的統計方法也被介紹。內容涵蓋材料科學到資訊科學,以反映該領域的跨學科特性。書中提出了一種觀點,提供了一個範式(材料設計的共同設計迴圈),以便從實驗和計算中迭代學習,開發具有最佳性能的材料。這樣的迴圈需要整合領域材料知識、描述符數據庫(基因)、用於預測特定性質的代理或統計模型(帶有不確定性)、執行自適應實驗設計以指導下一次實驗或計算,以及高通量計算和實驗的各個方面。這本書的主題是製造,目標是將發現和設計新材料的時間縮短一半。加速發現依賴於使用大型數據庫、計算和數學,這與人類基因組計畫中所使用的方法相似。因此,需要新的方法來探索複雜材料和過程所呈現的巨大相位空間。為了實現所需的性能提升,需要一種預測能力,以指導實驗和計算朝著最有成效的方向發展,從而減少不成功的試驗。儘管計算和實驗技術已有所進步,生成了大量數據;但如果沒有明確的模型連結方式,數據驅動發現的全部價值將無法實現。因此,除了實驗、理論和計算材料科學外,我們還需要為我們的工具包增加一個「第四條腿」,使「材料基因組」成為現實,即材料資訊學的科學。

最後瀏覽商品 (20)