Decentralized Neural Control: Application to Robotics (Studies in Systems, Decision and Control)
暫譯: 去中心化神經控制:應用於機器人技術(系統、決策與控制研究)
Ramon Garcia-Hernandez, Michel Lopez-Franco, Edgar N. Sanchez, Alma y. Alanis, Jose A. Ruz-Hernandez
- 出版商: Springer
- 出版日期: 2017-02-13
- 售價: $5,220
- 貴賓價: 9.5 折 $4,959
- 語言: 英文
- 頁數: 111
- 裝訂: Hardcover
- ISBN: 3319533118
- ISBN-13: 9783319533117
-
相關分類:
機器人製作 Robots
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book provides a decentralized approach for the identification and control of robotics systems. It also presents recent research in decentralized neural control and includes applications to robotics. Decentralized control is free from difficulties due to complexity in design, debugging, data gathering and storage requirements, making it preferable for interconnected systems. Furthermore, as opposed to the centralized approach, it can be implemented with parallel processors.
This approach deals with four decentralized control schemes, which are able to identify the robot dynamics. The training of each neural network is performed on-line using an extended Kalman filter (EKF).
The first indirect decentralized control scheme applies the discrete-time block control approach, to formulate a nonlinear sliding manifold.
The second direct decentralized neural control scheme is based on the backstepping technique, approximated by a high order neural network.The third control scheme applies a decentralized neural inverse optimal control for stabilization.
The fourth decentralized neural inverse optimal control is designed for trajectory tracking.
This comprehensive work on decentralized control of robot manipulators and mobile robots is intended for professors, students and professionals wanting to understand and apply advanced knowledge in their field of work.
商品描述(中文翻譯)
這本書提供了一種去中心化的方法來識別和控制機器人系統。它還介紹了去中心化神經控制的最新研究,並包括對機器人的應用。去中心化控制不受設計、除錯、數據收集和存儲需求的複雜性所帶來的困難,使其在互聯系統中更具優勢。此外,與集中式方法相比,它可以在平行處理器上實施。
這種方法涉及四種去中心化控制方案,能夠識別機器人的動力學。每個神經網絡的訓練都是在線進行的,使用擴展卡爾曼濾波器(EKF)。
第一種間接去中心化控制方案應用離散時間區塊控制方法,來構建一個非線性滑模面。
第二種直接去中心化神經控制方案基於反步驟技術,並由高階神經網絡進行近似。
第三種控制方案應用去中心化神經逆最優控制來實現穩定。
第四種去中心化神經逆最優控制則是為了軌跡跟蹤而設計的。
這部關於機器人操作臂和移動機器人去中心化控制的綜合著作,旨在幫助教授、學生和專業人士理解並應用其工作領域中的先進知識。