Granular-Relational Data Mining: How to Mine Relational Data in the Paradigm of Granular Computing? (Studies in Computational Intelligence)
暫譯: 細粒度關聯數據挖掘:如何在細粒度計算範式中挖掘關聯數據?(計算智能研究)

Piotr Hońko

  • 出版商: Springer
  • 出版日期: 2017-02-10
  • 售價: $4,470
  • 貴賓價: 9.5$4,247
  • 語言: 英文
  • 頁數: 123
  • 裝訂: Hardcover
  • ISBN: 3319527509
  • ISBN-13: 9783319527505
  • 相關分類: Data-miningSQL
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case.

Both approaches make it possible to perform and improve popular data mining tasks such as classification, clustering, and association discovery. How can different relational data mining tasks best be unified? How can the construction process of relational patterns be simplified? How can richer knowledge from relational data be discovered? All these questions can be answered in the same way: by mining relational data in the paradigm of granular computing!

This book will allow readers with previous experience in the field of relational data mining to discover the many benefits of its granular perspective. In turn, those readers familiar with the paradigm of granular computing will find valuable insights on its application to mining relational data. Lastly, the book offers all readers interested in computational intelligence in the broader sense the opportunity to deepen their understanding of the newly emerging field granular-relational data mining.

商品描述(中文翻譯)

本書提供了兩種一般的粒度計算方法來挖掘關聯數據,第一種方法使用關聯對象的抽象描述來構建其粒度表示,而第二種方法則將現有的粒度數據挖掘解決方案擴展到關聯情況。

這兩種方法使得執行和改進流行的數據挖掘任務(如分類、聚類和關聯發現)成為可能。如何最佳地統一不同的關聯數據挖掘任務?如何簡化關聯模式的構建過程?如何從關聯數據中發現更豐富的知識?所有這些問題都可以用同樣的方式回答:通過在粒度計算的範式下挖掘關聯數據!

本書將使具有關聯數據挖掘經驗的讀者發現其粒度視角的諸多好處。反過來,對粒度計算範式熟悉的讀者將會發現其在挖掘關聯數據方面的應用所帶來的寶貴見解。最後,本書為所有對計算智能(computational intelligence)感興趣的讀者提供了深入了解新興領域——粒度關聯數據挖掘的機會。