EEG Signal Analysis and Classification: Techniques and Applications (Health Information Science) (腦電圖信號分析與分類:技術與應用(健康資訊科學))
Siuly Siuly, Yan Li, Yanchun Zhang
- 出版商: Springer
- 出版日期: 2017-01-10
- 售價: $6,290
- 貴賓價: 9.5 折 $5,976
- 語言: 英文
- 頁數: 256
- 裝訂: Hardcover
- ISBN: 3319476521
- ISBN-13: 9783319476520
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book presents advanced methodologies in two areas related to electroencephalogram (EEG) signals: detection of epileptic seizures and identification of mental states in brain computer interface (BCI) systems. The proposed methods enable the extraction of this vital information from EEG signals in order to accurately detect abnormalities revealed by the EEG. New methods will relieve the time-consuming and error-prone practices that are currently in use.
Common signal processing methodologies include wavelet transformation and Fourier transformation, but these methods are not capable of managing the size of EEG data.
Addressing the issue, this book examines new EEG signal analysis approaches with a combination of statistical techniques (e.g. random sampling, optimum allocation) and machine learning methods. The developed methods provide better results than the existing methods. The book also offers applications of the developed methodologies that have been tested on several real-time benchmark databases.
This book concludes with thoughts on the future of the field and anticipated research challenges. It gives new direction to the field of analysis and classification of EEG signals through these more efficient methodologies. Researchers and experts will benefit from its suggested improvements to the current computer-aided based diagnostic systems for the precise analysis and management of EEG signals.
商品描述(中文翻譯)
本書介紹了與腦電圖(EEG)信號相關的兩個領域的先進方法論:癲癇發作的檢測和腦機介面(BCI)系統中的心理狀態識別。所提出的方法能夠從EEG信號中提取這些重要信息,以準確檢測EEG所揭示的異常情況。新方法將減輕目前使用的耗時且易出錯的做法。
常見的信號處理方法包括小波變換和傅立葉變換,但這些方法無法處理EEG數據的龐大規模。
針對這一問題,本書探討了結合統計技術(例如隨機抽樣、最佳配置)和機器學習方法的新EEG信號分析方法。所開發的方法提供了比現有方法更好的結果。本書還提供了在幾個實時基準數據庫上測試過的開發方法的應用。
本書最後對該領域的未來和預期的研究挑戰進行了思考。通過這些更高效的方法論,為EEG信號的分析和分類領域指明了新的方向。研究人員和專家將從其對當前計算機輔助診斷系統的改進建議中受益,以便對EEG信號進行精確的分析和管理。