Computer Vision Metrics: Textbook (Hardcover) (電腦視覺指標:教科書 (精裝版))
Scott Krig
- 出版商: Springer
- 出版日期: 2016-10-04
- 定價: $3,500
- 售價: 8.0 折 $2,800
- 語言: 英文
- 頁數: 637
- 裝訂: Hardcover
- ISBN: 3319337610
- ISBN-13: 9783319337616
-
相關分類:
Computer Vision
-
相關翻譯:
電腦視覺度量 從特徵描述到深度學習 (簡中版)
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$2,180$2,071 -
$4,520$4,294 -
$780$616 -
$780$616 -
$360$284 -
$2,993Data Mining: The Textbook (Hardcover)
-
$420$332 -
$580$493 -
$580$458 -
$560$476 -
$580$458 -
$720$562 -
$690$538 -
$480$379 -
$590$502 -
$680$578 -
$500$395 -
$580$458 -
$870Building Machine Learning Projects with TensorFlow (Paperback)
-
$360$281 -
$580$458 -
$699$552 -
$2,380$2,261 -
$590$460 -
$390$332
相關主題
商品描述
Based on the successful 2014 book published by Apress, this textbook edition is expanded to provide a comprehensive history and state-of-the-art survey for fundamental computer vision methods. With over 800 essential references, as well as chapter-by-chapter learning assignments, both students and researchers can dig deeper into core computer vision topics. The survey covers everything from feature descriptors, regional and global feature metrics, feature learning architectures, deep learning, neuroscience of vision, neural networks, and detailed example architectures to illustrate computer vision hardware and software optimization methods.
To complement the survey, the textbook includes useful analyses which provide insight into the goals of various methods, why they work, and how they may be optimized.
The text delivers an essential survey and a valuable taxonomy, thus providing a key learning tool for students, researchers and engineers, to supplement the many effective hands-on resources and open source projects, such as OpenCVand other imaging and deep learning tools.
商品描述(中文翻譯)
基於Apress於2014年出版的成功書籍,這本教科書版擴充了內容,提供了全面的計算機視覺方法的歷史和最新調查。這本書包含超過800個重要參考文獻,以及逐章的學習任務,讓學生和研究人員可以更深入地研究核心計算機視覺主題。調查範圍涵蓋了特徵描述符、區域和全局特徵度量、特徵學習架構、深度學習、視覺神經科學、神經網絡,以及詳細的示例架構,以說明計算機視覺硬件和軟件優化方法。
為了補充調查,這本教科書還包括有用的分析,以深入了解各種方法的目標、工作原理和優化方式。
這本教科書提供了一個重要的調查和有價值的分類,為學生、研究人員和工程師提供了一個關鍵的學習工具,以補充許多有效的實踐資源和開源項目,如OpenCV和其他影像和深度學習工具。