Data Science and Big Data Computing: Frameworks and Methodologies

  • 出版商: Springer
  • 出版日期: 2016-07-12
  • 售價: $5,480
  • 貴賓價: 9.5$5,206
  • 語言: 英文
  • 頁數: 319
  • 裝訂: Hardcover
  • ISBN: 3319318594
  • ISBN-13: 9783319318592
  • 相關分類: 大數據 Big-dataData Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by authoritative researchers and practitioners from around the world, discussing research developments and emerging trends, presenting case studies on helpful frameworks and innovative methodologies, and suggesting best practices for efficient and effective data analytics. Features: reviews a framework for fast data applications, a technique for complex event processing, and agglomerative approaches for the partitioning of networks; introduces a unified approach to data modeling and management, and a distributed computing perspective on interfacing physical and cyber worlds; presents techniques for machine learning for big data, and identifying duplicate records in data repositories; examines enabling technologies and tools for data mining; proposes frameworks for data extraction, and adaptive decision making and social media analysis.

商品描述(中文翻譯)

這本啟發性的文本/參考書調查了數據科學的最新技術,並提供了有關大數據分析的實用指導。來自全球的權威研究者和實務專家的專業觀點,討論了研究發展和新興趨勢,呈現了有助於框架和創新方法的案例研究,並建議了高效且有效的數據分析最佳實踐。特色包括:回顧快速數據應用的框架、複雜事件處理的技術,以及用於網絡劃分的聚合方法;介紹數據建模和管理的統一方法,以及在物理和網絡世界之間介面的分散計算視角;呈現大數據機器學習的技術,以及在數據庫中識別重複記錄的方法;檢視數據挖掘的啟用技術和工具;提出數據提取的框架,以及自適應決策和社交媒體分析的框架。