Hybrid Metaheuristics: Powerful Tools for Optimization (Artificial Intelligence: Foundations, Theory, and Algorithms)
暫譯: 混合元啟發式演算法:優化的強大工具(人工智慧:基礎、理論與演算法)
Christian Blum, Günther R. Raidl
- 出版商: Springer
- 出版日期: 2016-05-31
- 售價: $5,640
- 貴賓價: 9.5 折 $5,358
- 語言: 英文
- 頁數: 157
- 裝訂: Hardcover
- ISBN: 3319308823
- ISBN-13: 9783319308821
-
相關分類:
人工智慧、Algorithms-data-structures
海外代購書籍(需單獨結帳)
商品描述
This book explains the most prominent and some promising new, general techniques that combine metaheuristics with other optimization methods. A first introductory chapter reviews the basic principles of local search, prominent metaheuristics, and tree search, dynamic programming, mixed integer linear programming, and constraint programming for combinatorial optimization purposes. The chapters that follow present five generally applicable hybridization strategies, with exemplary case studies on selected problems: incomplete solution representations and decoders; problem instance reduction; large neighborhood search; parallel non-independent construction of solutions within metaheuristics; and hybridization based on complete solution archives.
The authors are among the leading researchers in the hybridization of metaheuristics with other techniques for optimization, and their work reflects the broad shift to problem-oriented rather than algorithm-oriented approaches, enabling faster and more effective implementation in real-life applications. This hybridization is not restricted to different variants of metaheuristics but includes, for example, the combination of mathematical programming, dynamic programming, or constraint programming with metaheuristics, reflecting cross-fertilization in fields such as optimization, algorithmics, mathematical modeling, operations research, statistics, and simulation. The book is a valuable introduction and reference for researchers and graduate students in these domains.
商品描述(中文翻譯)
這本書解釋了最突出的以及一些有前景的新一般技術,這些技術將元啟發式方法與其他優化方法結合起來。第一章作為介紹,回顧了局部搜尋的基本原則、突出的元啟發式方法,以及用於組合優化的樹搜尋、動態規劃、混合整數線性規劃和約束規劃。隨後的章節介紹了五種普遍適用的混合策略,並針對選定問題提供了範例案例研究:不完整解的表示和解碼器;問題實例的縮減;大鄰域搜尋;在元啟發式方法中平行非獨立解的構建;以及基於完整解檔案的混合。
作者是將元啟發式方法與其他優化技術進行混合的領先研究者之一,他們的工作反映了從以算法為導向轉向以問題為導向的方法的廣泛轉變,使得在實際應用中能夠更快且更有效地實施。這種混合不僅限於不同變體的元啟發式方法,還包括例如將數學規劃、動態規劃或約束規劃與元啟發式方法結合,反映了優化、算法學、數學建模、運籌學、統計學和模擬等領域的交叉融合。這本書對於這些領域的研究人員和研究生來說,是一本有價值的入門和參考資料。