Python for Probability, Statistics, and Machine Learning (2016)
暫譯: Python 機率、統計與機器學習入門 (2016)

José Unpingco

相關主題

商品描述

This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas.  The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are provided as supplementary downloads. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Modern Python modules like Pandas, Sympy, and Scikit-learn are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples.  This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.

商品描述(中文翻譯)

這本書涵蓋了連結機率、統計和機器學習的關鍵概念,並使用 Python 模組來進行說明。整個文本,包括所有圖形和數值結果,都可以使用提供的 Python 代碼及其相關的 Jupyter/IPython 筆記本進行重現,這些內容作為補充下載提供。作者通過使用多種分析方法和 Python 代碼來處理有意義的範例,發展機器學習中的關鍵直覺,從而將理論概念與具體實現相連結。現代 Python 模組如 Pandas、Sympy 和 Scikit-learn 被應用於模擬和可視化重要的機器學習概念,如偏差/方差權衡、交叉驗證和正則化。許多抽象的數學概念,例如機率論中的收斂,通過數值範例進行發展和說明。這本書適合任何具有本科程度的機率、統計或機器學習基礎知識,以及具備基本 Python 程式設計知識的人士。