Machine Learning Techniques for Gait Biometric Recognition: Using the Ground Reaction Force
暫譯: 步態生物識別的機器學習技術:利用地面反作用力

James Eric Mason, Issa Traoré, Isaac Woungang

  • 出版商: Springer
  • 出版日期: 2016-02-12
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 223
  • 裝訂: Hardcover
  • ISBN: 331929086X
  • ISBN-13: 9783319290867
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF.

This book

·         introduces novel machine-learning-based temporal normalization techniques

·         bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition

·         provides detailed discussions of key research challenges and open research issues in gait biometrics recognition

·         compares biometrics systems trained and tested with the same footwear against those trained and tested with different footwear

商品描述(中文翻譯)

本書專注於如何利用機器學習技術來分析和利用一種特定類別的行為生物識別技術,稱為步態生物識別。提出了一個基於地面反作用力(Ground Reaction Force, GRF)的步態生物識別框架,並通過實驗進行驗證。此外,還提出了對現有識別技術的深入分析,這些技術最適合用於基於步伐的GRF個人識別,並比較了從未在任何先前的GRF識別研究中直接比較過的特徵提取器、正規化器和分類器配置。最後,提供了許多現有機器學習技術的詳細理論概述,並提出了兩種專門為步態生物識別使用GRF而開發的新型數據處理技術。

本書:
· 介紹了新穎的基於機器學習的時間正規化技術
· 橋接了有關鞋類和步伐速度對基於步伐的GRF個人識別影響的研究空白
· 提供了有關步態生物識別中的關鍵研究挑戰和未解決研究問題的詳細討論
· 比較了使用相同鞋類訓練和測試的生物識別系統與使用不同鞋類訓練和測試的系統