Link Prediction in Social Networks: Role of Power Law Distribution (SpringerBriefs in Computer Science)
暫譯: 社交網絡中的連結預測:冪律分佈的角色 (SpringerBriefs in Computer Science)

Srinivas Virinchi, Pabitra Mitra

  • 出版商: Springer
  • 出版日期: 2016-01-29
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 67
  • 裝訂: Paperback
  • ISBN: 3319289217
  • ISBN-13: 9783319289212
  • 相關分類: Computer-Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This work presents link prediction similarity measures for social networks that exploit the degree distribution of the networks. In the context of link prediction in dense networks, the text proposes similarity measures based on Markov inequality degree thresholding (MIDTs), which only consider nodes whose degree is above a threshold for a possible link. Also presented are similarity measures based on cliques (CNC, AAC, RAC), which assign extra weight between nodes sharing a greater number of cliques. Additionally, a locally adaptive (LA) similarity measure is proposed that assigns different weights to common nodes based on the degree distribution of the local neighborhood and the degree distribution of the network. In the context of link prediction in dense networks, the text introduces a novel two-phase framework that adds edges to the sparse graph to forma boost graph.

商品描述(中文翻譯)

這項工作提出了利用社交網絡的度數分佈進行鏈接預測的相似性度量。在密集網絡的鏈接預測背景下,本文提出了基於馬可夫不等式度數閾值(Markov inequality degree thresholding, MIDTs)的相似性度量,該度量僅考慮度數高於閾值的節點作為可能的鏈接。此外,還提出了基於團體(cliques)的相似性度量(CNC、AAC、RAC),這些度量在共享更多團體的節點之間分配額外的權重。此外,還提出了一種局部自適應(locally adaptive, LA)相似性度量,根據局部鄰域的度數分佈和網絡的度數分佈,為共同節點分配不同的權重。在密集網絡的鏈接預測背景下,本文介紹了一種新穎的兩階段框架,該框架向稀疏圖中添加邊以形成增強圖。