Data Mining for Social Robotics: Toward Autonomously Social Robots (Advanced Information and Knowledge Processing)
暫譯: 社會機器人的資料探勘:邁向自主社交機器人(進階資訊與知識處理)

Yasser Mohammad, Toyoaki Nishida

  • 出版商: Springer
  • 出版日期: 2016-02-10
  • 售價: $4,510
  • 貴賓價: 9.5$4,285
  • 語言: 英文
  • 頁數: 328
  • 裝訂: Hardcover
  • ISBN: 3319252305
  • ISBN-13: 9783319252308
  • 相關分類: 機器人製作 RobotsData-mining
  • 海外代購書籍(需單獨結帳)

商品描述

This book explores an approach to social robotics based solely on autonomous unsupervised techniques and positions it within a structured exposition of related research in psychology, neuroscience, HRI, and data mining.  The authors present an autonomous and developmental approach that allows the robot to learn interactive behavior by imitating humans using algorithms from time-series analysis and machine learning.

The first part provides a comprehensive and structured introduction to time-series analysis, change point discovery, motif discovery and causality analysis focusing on possible applicability to HRI problems. Detailed explanations of all the algorithms involved are provided with open-source implementations in MATLAB enabling the reader to experiment with them. Imitation and simulation are the key technologies used to attain social behavior autonomously in the proposed approach.  Part two gives the reader a wide overview of research in these areas in psychology, and ethology. Based on this background, the authors discuss approaches to endow robots with the ability to autonomously learn how to be social. 

Data Mining for Social Robots will be essential reading for graduate students and practitioners interested in social and developmental robotics.

商品描述(中文翻譯)

這本書探討了一種僅基於自主無監督技術的社會機器人學方法,並將其置於心理學、神經科學、人機互動(HRI)和資料探勘相關研究的結構性闡述中。作者提出了一種自主和發展的方法,允許機器人通過模仿人類來學習互動行為,使用時間序列分析和機器學習的演算法。

第一部分提供了對時間序列分析、變化點發現、模式發現和因果分析的全面且結構化的介紹,重點關注其在HRI問題上的潛在應用。所有相關演算法的詳細解釋均提供了開源的MATLAB實現,讓讀者能夠進行實驗。模仿和模擬是該方法中用於自主獲得社會行為的關鍵技術。第二部分則為讀者提供了心理學和動物行為學領域研究的廣泛概述。在此背景下,作者討論了賦予機器人自主學習社交能力的方法。

《社會機器人的資料探勘》將是對於對社會和發展機器人學感興趣的研究生和從業者的重要讀物。