Real Mathematical Analysis, 2/e (Hardcover)
暫譯: 實變數數學分析,第二版 (精裝本)

Charles Chapman Pugh

買這商品的人也買了...

商品描述

Based on an honors course taught by the author at UC Berkeley, this introduction to undergraduate real analysis gives a different emphasis by stressing the importance of pictures and hard problems. Topics include: a natural construction of the real numbers, four-dimensional visualization, basic point-set topology, function spaces, multivariable calculus via differential forms (leading to a simple proof of the Brouwer Fixed Point Theorem), and a pictorial treatment of Lebesgue theory. Over 150 detailed illustrations elucidate abstract concepts and salient points in proofs. The exposition is informal and relaxed, with many helpful asides, examples, some jokes, and occasional comments from mathematicians, such as Littlewood, Dieudonné, and Osserman. This book thus succeeds in being more comprehensive, more comprehensible, and more enjoyable, than standard introductions to analysis.

New to the second edition of Real Mathematical Analysis is a presentation of Lebesgue integration done almost entirely using the undergraph approach of Burkill. Payoffs include: concise picture proofs of the Monotone and Dominated Convergence Theorems, a one-line/one-picture proof of Fubini's theorem from Cavalieri’s Principle, and, in many cases, the ability to see an integral result from measure theory. The presentation includes Vitali’s Covering Lemma, density points ― which are rarely treated in books at this level ― and the almost everywhere differentiability of monotone functions. Several new exercises now join a collection of over 500 exercises that pose interesting challenges and introduce special topics to the student keen on mastering this beautiful subject.

商品描述(中文翻譯)

根據作者在加州大學伯克利分校教授的榮譽課程,這本本科實變分析的入門書籍強調了圖像和困難問題的重要性。主題包括:實數的自然構造、四維可視化、基本點集拓撲、函數空間、通過微分形式的多變數微積分(導致布勞威爾不動點定理的簡單證明),以及對勒貝格理論的圖像化處理。超過150幅詳細插圖闡明了抽象概念和證明中的重要要點。這本書的敘述風格非正式且輕鬆,包含許多有用的附註、例子、一些笑話,以及數學家如利特伍德(Littlewood)、迪厄多內(Dieudonné)和奧瑟曼(Osserman)的偶爾評論。因此,這本書在全面性、可理解性和趣味性上都超越了標準的分析入門書籍。

《實數數學分析》第二版的新內容是幾乎完全使用Burkill的下圖法來呈現勒貝格積分。其優點包括:單調收斂定理和主導收斂定理的簡潔圖像證明、基於卡瓦列里的原理的Fubini定理的一行/一圖證明,以及在許多情況下,能夠“看見”來自測度理論的積分結果。這本書的內容包括維塔利覆蓋引理、密度點——這些在此級別的書籍中很少被處理——以及單調函數的幾乎處處可微性。幾個新的習題現在加入了超過500道習題的集合,這些習題提出有趣的挑戰並向渴望掌握這門美麗學科的學生介紹特殊主題。