Variable Lebesgue Spaces: Foundations and Harmonic Analysis, 2013 Edition (Hardcover)
暫譯: 可變勒貝格空間:基礎與調和分析,2013年版(精裝本)

David V. Cruz-Uribe, Alberto Fiorenza

  • 出版商: ***
  • 出版日期: 2013-02-23
  • 售價: $4,100
  • 貴賓價: 9.5$3,895
  • 語言: 英文
  • 頁數: 312
  • 裝訂: Hardcover
  • ISBN: 3034805470
  • ISBN-13: 9783034805476
  • 海外代購書籍(需單獨結帳)

商品描述

This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing.

The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.​

商品描述(中文翻譯)

本書提供了可接觸的變數 Lebesgue 空間理論介紹。這些空間通過將常數指數 p 替換為變數指數 p(x) 來推廣經典的 Lebesgue 空間。它們在1930年代初期被引入,但自1990年代初以來因其與變分法和具有非標準增長條件的偏微分方程的關聯,以及在物理學和影像處理問題中的應用而重新受到關注。

本書首先發展基本的函數空間性質。它避免了更抽象的函數分析方法,而是強調一種實用的方法,清楚地表明變數和經典 Lebesgue 空間之間的相似性和差異。隨後的章節專注於變數 Lebesgue 空間上的調和分析。Hardy-Littlewood 最大算子的理論被完全發展,並介紹了變數 Lebesgue 空間與加權範數不等式之間的聯繫。調和分析中的其他重要算子 - 奇異積分、Riesz 潛能和近似恆等式 - 使用 Rubio de Francia 的加權範數不等式理論的強大推廣來處理。最後一章將前幾章的結果應用於證明有關變數 Sobolev 空間的基本結果。