Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra (Undergraduate Texts in Mathematics)
暫譯: 理想、變數與演算法:計算代數幾何與交換代數導論(本科數學教材)

David A. Cox, John Little, Donal O'Shea

買這商品的人也買了...

相關主題

商品描述

This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the Preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry―the elimination theorem, the extension theorem, the closure theorem and the Nullstellensatz―this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new Chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D).

The book may serve as a first or second course in undergraduate abstract algebra and with some supplementation perhaps, for beginning graduate level courses in algebraic geometry or computational algebra. Prerequisites for the reader include linear algebra and a proof-oriented course. It is assumed that the reader has access to a computer algebra system. Appendix C describes features of Maple™, Mathematica® and Sage, as well as other systems that are most relevant to the text. Pseudocode is used in the text; Appendix B carefully describes the pseudocode used.

From the reviews of previous editions:

 “…The book gives an introduction to Buchberger’s algorithm with applications to syzygies, Hilbert polynomials, primary decompositions. There is an introduction to classical algebraic geometry with applications to the ideal membership problem, solving polynomial equations and elimination theory. …The book is well-written. …The reviewer is sure that it will be an excellent guide to introduce further undergraduates in the algorithmic aspect of commutative algebra and algebraic geometry.”

 ―Peter Schenzel, zbMATH, 2007

 “I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry.”

 ―The American Mathematical Monthly

商品描述(中文翻譯)

這段文字涵蓋了代數幾何和交換代數的主題,並強調實用和計算方面的視角。前四章構成了本書的核心。前言中的綜合圖表展示了在學習完這些章節後,進一步學習材料的多種方式。除了代數幾何的基本概念——消去定理、擴展定理、閉包定理和Nullstellensatz——這一新版還納入了幾個重要的變更,所有變更均在前言中列出。最大的修訂包括新增的第十章,介紹了過去幾十年在計算Gröbner基方面取得的一些重要進展。本書還在附錄C中包含了當前的計算機代數材料,以及更新的獨立專案(附錄D)。

本書可作為本科抽象代數的第一或第二門課程,並且在某些補充材料的幫助下,或許也適合用於代數幾何或計算代數的研究生入門課程。讀者的先備知識包括線性代數和以證明為導向的課程。假設讀者能夠使用計算機代數系統。附錄C描述了Maple™、Mathematica®和Sage的特性,以及其他與本書內容最相關的系統。文本中使用了偽代碼;附錄B詳細描述了所使用的偽代碼。

來自前幾版的評價:

「……這本書介紹了Buchberger演算法及其在syzygies、Hilbert多項式和主分解中的應用。還介紹了古典代數幾何及其在理想成員問題、解多項式方程和消去理論中的應用。……這本書寫得很好。……評審確信這將是引導更多本科生了解交換代數和代數幾何的演算法方面的優秀指南。」

―Peter Schenzel, **zbMATH**, 2007

「我認為這本書非常棒。……內容表達非常清晰,有許多有用的圖片,並且有大量的指導性練習,其中一些相當具有挑戰性……提供了現代交換代數和代數幾何的核心和靈魂。」

**―美國數學月刊**