The Functional Analysis of Quantum Information Theory: A Collection of Notes Based on Lectures by Gilles Pisier, K. R. Parthasarathy, Vern Paulsen and Andreas Winter (Lecture Notes in Physics)
Ved Prakash Prakash Gupta
- 出版商: Springer
- 出版日期: 2015-06-10
- 售價: $2,190
- 貴賓價: 9.5 折 $2,081
- 語言: 英文
- 頁數: 152
- 裝訂: Paperback
- ISBN: 3319167170
- ISBN-13: 9783319167176
-
相關分類:
物理學 Physics、量子 Quantum
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$2,870$2,727 -
$354$336 -
$556圖表示學習
-
$1,380$1,352 -
$880$695 -
$880$748 -
$4,050$3,848
相關主題
商品描述
This book provides readers with a concise introduction to current studies on operator-algebras and their generalizations, operator spaces and operator systems, with a special focus on their application in quantum information science. This basic framework for the mathematical formulation of quantum information can be traced back to the mathematical work of John von Neumann, one of the pioneers of operator algebras, which forms the underpinning of most current mathematical treatments of the quantum theory, besides being one of the most dynamic areas of twentieth century functional analysis. Today, von Neumann’s foresight finds expression in the rapidly growing field of quantum information theory. These notes gather the content of lectures given by a very distinguished group of mathematicians and quantum information theorists, held at the IMSc in Chennai some years ago, and great care has been taken to present the material as a primer on the subject matter. Starting from the basic definitions of operator spaces and operator systems, this text proceeds to discuss several important theorems including Stinespring’s dilation theorem for completely positive maps and Kirchberg’s theorem on tensor products of C*-algebras. It also takes a closer look at the abstract characterization of operator systems and, motivated by the requirements of different tensor products in quantum information theory, the theory of tensor products in operator systems is discussed in detail. On the quantum information side, the book offers a rigorous treatment of quantifying entanglement in bipartite quantum systems, and moves on to review four different areas in which ideas from the theory of operator systems and operator algebras play a natural role: the issue of zero-error communication over quantum channels, the strong subadditivity property of quantum entropy, the different norms on quantum states and the corresponding induced norms on quantum channels, and, lastly, the applications of matrix-valued random variables in the quantum information setting.
商品描述(中文翻譯)
這本書向讀者提供了對於算子代數及其延伸、算子空間和算子系統的現有研究的簡明介紹,並特別關注它們在量子信息科學中的應用。這種對於量子信息的數學形式化的基本框架可以追溯到約翰·馮·諾伊曼的數學工作,他是算子代數的先驅之一,除了是二十世紀函數分析中最具活力的領域之一外,也是當今大多數量子理論的數學處理的基礎。如今,諾伊曼的遠見在快速發展的量子信息理論領域中得到體現。這些筆記匯集了幾年前在印度馬德拉斯數學研究所舉行的一系列著名數學家和量子信息理論家的講座內容,並非常謹慎地將材料呈現為該主題的入門指南。從算子空間和算子系統的基本定義開始,本書進一步討論了幾個重要的定理,包括完全正算子映射的Stinespring擴張定理和C *-代數的張量積的Kirchberg定理。它還更詳細地研究了算子系統的抽象特徵,並且在量子信息理論中不同張量積的要求的推動下,詳細討論了算子系統中的張量積理論。在量子信息方面,本書對於量子系統中的雙部分纏結的量化提供了嚴謹的處理,並進一步回顧了四個不同領域,其中算子系統和算子代數的理論思想自然發揮作用:量子通道上的零錯誤通信問題,量子熵的強次可加性性質,量子狀態上的不同範數及其對應的量子通道誘導範數,以及在量子信息設置中矩陣值隨機變量的應用。