Support Vector Machines and Evolutionary Algorithms for Classification: Single or Together? (Intelligent Systems Reference Library)
暫譯: 支持向量機與進化演算法在分類中的應用:單獨使用還是結合使用?(智能系統參考文獻庫)
Catalin Stoean, Ruxandra Stoean
- 出版商: Springer
- 出版日期: 2014-06-13
- 售價: $4,440
- 貴賓價: 9.5 折 $4,218
- 語言: 英文
- 頁數: 122
- 裝訂: Hardcover
- ISBN: 3319069403
- ISBN-13: 9783319069401
-
相關分類:
Algorithms-data-structures
海外代購書籍(需單獨結帳)
商品描述
When discussing classification, support vector machines are known to be a capable and efficient technique to learn and predict with high accuracy within a quick time frame. Yet, their black box means to do so make the practical users quite circumspect about relying on it, without much understanding of the how and why of its predictions. The question raised in this book is how can this ‘masked hero’ be made more comprehensible and friendly to the public: provide a surrogate model for its hidden optimization engine, replace the method completely or appoint a more friendly approach to tag along and offer the much desired explanations? Evolutionary algorithms can do all these and this book presents such possibilities of achieving high accuracy, comprehensibility, reasonable runtime as well as unconstrained performance.
商品描述(中文翻譯)
在討論分類時,支持向量機被認為是一種能夠高效學習和預測的技術,能在短時間內達到高準確度。然而,其黑箱特性使得實際使用者對於依賴這種技術變得相當謹慎,因為他們對於其預測的過程和原因並不十分了解。本書提出的問題是,如何使這位「被掩蓋的英雄」對公眾變得更易理解和友好:提供一個替代模型來解釋其隱藏的優化引擎,完全替換該方法,或採用更友好的方式來附加並提供所需的解釋?進化演算法可以做到這些,本書展示了實現高準確度、可理解性、合理運行時間以及無約束性能的可能性。