Machine Learning for Adaptive Many-Core Machines - A Practical Approach (Studies in Big Data)
暫譯: 適應性多核心機器的機器學習:實用方法(大數據研究)

Noel Lopes, Bernardete Ribeiro

  • 出版商: Springer
  • 出版日期: 2014-07-16
  • 售價: $4,510
  • 貴賓價: 9.5$4,285
  • 語言: 英文
  • 頁數: 241
  • 裝訂: Hardcover
  • ISBN: 3319069373
  • ISBN-13: 9783319069371
  • 相關分類: 大數據 Big-dataMachine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

The overwhelming data produced everyday and the increasing performance and cost requirements of applications are transversal to a wide range of activities in society, from science to industry. In particular, the magnitude and complexity of the tasks that Machine Learning (ML) algorithms have to solve are driving the need to devise adaptive many-core machines that scale well with the volume of data, or in other words, can handle Big Data.

This book gives a concise view on how to extend the applicability of well-known ML algorithms in Graphics Processing Unit (GPU) with data scalability in mind. It presents a series of new techniques to enhance, scale and distribute data in a Big Learning framework. It is not intended to be a comprehensive survey of the state of the art of the whole field of machine learning for Big Data. Its purpose is less ambitious and more practical: to explain and illustrate existing and novel GPU-based ML algorithms, not viewed as a universal solution for the Big Data challenges but rather as part of the answer, which may require the use of different strategies coupled together.

商品描述(中文翻譯)

每天產生的龐大數據以及應用程式日益增加的性能和成本需求,橫跨社會中各種活動,從科學到工業。特別是,機器學習(Machine Learning, ML)演算法需要解決的任務的規模和複雜性,驅動著設計適應性多核心機器的需求,這些機器能夠隨著數據量的增長而良好擴展,換句話說,能夠處理大數據(Big Data)。

本書簡要介紹了如何在考慮數據可擴展性的情況下,擴展知名的基於圖形處理單元(Graphics Processing Unit, GPU)的機器學習演算法的適用性。它提出了一系列新技術,以增強、擴展和分配大學習框架中的數據。本書並不打算全面調查大數據機器學習領域的最新技術。其目的較不雄心勃勃且更具實用性:解釋和說明現有及新穎的基於GPU的機器學習演算法,這些演算法並不被視為解決大數據挑戰的普遍解決方案,而是作為答案的一部分,可能需要將不同的策略結合使用。