Data Analytics for Traditional Chinese Medicine Research
暫譯: 傳統中醫研究的數據分析
- 出版商: Springer
- 出版日期: 2014-03-06
- 售價: $4,560
- 貴賓價: 9.5 折 $4,332
- 語言: 英文
- 頁數: 248
- 裝訂: Hardcover
- ISBN: 3319038001
- ISBN-13: 9783319038001
-
相關分類:
Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
This contributed volume explores how data mining, machine learning, and similar statistical techniques can analyze the types of problems arising from Traditional Chinese Medicine (TCM) research. The book focuses on the study of clinical data and the analysis of herbal data. Challenges addressed include diagnosis, prescription analysis, ingredient discoveries, network based mechanism deciphering, pattern-activity relationships, and medical informatics. Each author demonstrates how they made use of machine learning, data mining, statistics and other analytic techniques to resolve their research challenges, how successful if these techniques were applied, any insight noted and how these insights define the most appropriate future work to be carried out. Readers are given an opportunity to understand the complexity of diagnosis and treatment decision, the difficulty of modeling of efficacy in terms of herbs, the identification of constituent compounds in an herb, the relationship between these compounds and biological outcome so that evidence-based predictions can be made. Drawing on a wide range of experienced contributors, Data Analytics for Traditional Chinese Medicine Research is a valuable reference for professionals and researchers working in health informatics and data mining. The techniques are also useful for biostatisticians and health practitioners interested in traditional medicine and data analytics.
商品描述(中文翻譯)
本書探討了數據挖掘、機器學習及類似的統計技術如何分析來自傳統中醫(Traditional Chinese Medicine, TCM)研究所產生的各類問題。書中重點研究臨床數據及草藥數據的分析。所面臨的挑戰包括診斷、處方分析、成分發現、基於網絡的機制解碼、模式-活性關係以及醫療資訊學。每位作者展示了他們如何利用機器學習、數據挖掘、統計及其他分析技術來解決研究挑戰,這些技術的應用成效如何,所獲得的見解,以及這些見解如何定義未來最合適的工作方向。讀者將有機會理解診斷和治療決策的複雜性、以草藥為基礎的療效建模的困難、草藥中成分化合物的識別、這些化合物與生物結果之間的關係,以便能夠進行基於證據的預測。依據一系列經驗豐富的貢獻者,《傳統中醫研究的數據分析》是健康資訊學和數據挖掘領域專業人士和研究人員的重要參考資料。這些技術對於對傳統醫學和數據分析感興趣的生物統計學家和健康從業者也非常有用。