Artificial Psychology: Learning from the Unexpected Capabilities of Large Language Models
暫譯: 人工心理學:從大型語言模型的意外能力中學習
Lewis, Clayton
相關主題
商品描述
The success of predictive large language models (PLLMs) like GPT3 and ChatGPT has created both enthusiasts and skeptics of their widespread practical applications, but this book argues that the larger significance of such models is contained in what they suggest about human cognition. To explore this potential, the book develops a thought experiment called the Prediction Room, a reference to John Searle's influential Chinese Room argument, in which a human agent processes language by following a set of opaque written rules without possessing an inherent understanding of the language. The book proposes a new Room model--the Prediction Room with its resident Prediction Agent--generalizing the working of large language models. Working through a wide range of topics in cognitive science, the book challenges the conclusion of Searle's thought experiment, that discredited contemporary artificial intelligences (AI), through the suggestion that the Prediction Room offers a means of exploring how new ideas in AI can provide productive alternatives to traditional understandings of human cognition. In considering the implications of this, the book reviews an array of topics and issues in cognitive science to uncover new ideas and reinforce older ideas about the mental mechanisms involved in both sides. The discussion of these topics in the book serves two purposes. First, it aims to stimulate new thinking about familiar topics like language acquisition or the nature and acquisition of concepts. Second, by contrasting human psychology with the form of artificial psychology these models exhibit, it uncovers how new directions in the development of these systems can be better explored.
商品描述(中文翻譯)
預測大型語言模型(PLLMs)如 GPT-3 和 ChatGPT 的成功,既吸引了熱衷者,也引發了對其廣泛實用應用的懷疑,但本書主張這些模型的更大意義在於它們對人類認知的啟示。為了探索這一潛力,本書發展了一個名為預測室(Prediction Room)的思想實驗,這是對約翰·塞爾(John Searle)影響深遠的中文房間(Chinese Room)論證的參考,其中一個人類代理人通過遵循一套不透明的書面規則來處理語言,而並不具備對該語言的內在理解。本書提出了一個新的房間模型——預測室及其駐留的預測代理人(Prediction Agent),對大型語言模型的運作進行概括。通過探討認知科學中的廣泛主題,本書挑戰了塞爾思想實驗的結論,即當代人工智慧(AI)被否定的觀點,並提出預測室提供了一種探索 AI 中新思想如何為傳統人類認知理解提供富有成效的替代方案的途徑。在考慮這一點的影響時,本書回顧了一系列認知科學中的主題和問題,以揭示新思想並加強關於雙方涉及的心理機制的舊觀念。本書對這些主題的討論有兩個目的。首先,它旨在激發對語言習得或概念的本質和習得等熟悉主題的新思考。其次,通過將人類心理學與這些模型所展現的人工心理學形式進行對比,它揭示了如何更好地探索這些系統發展的新方向。
作者簡介
Clayton Lewis is Ermeritus Professor of Computer Science and Fellow of the Institute of Cognitive Science at the University of Colorado Boulder, and Fellow of the Hanse-Wissenschaftskolleg, Delmenhorst, Germany. He earned an A.B. in mathematics from Princeton University, an interdisciplinary M.S. in mathematics and linguistics from MIT, and a Ph.D. in experimental psychology from the University of Michigan. His work has contributed to user interface evaluatiion, programming language design, cognitive assistive technology, educational technology, and cognitive theory in causal attribution and learning. He has been honored by appointment to the ACM SIGCHI Academy, by the SIGCHI Social Impact Award, and by the ACM SIGACCESS Outstanding Contribution Award.
作者簡介(中文翻譯)
克萊頓·路易斯(Clayton Lewis)是科羅拉多大學博爾德分校計算機科學的名譽教授及認知科學研究所的研究員,並且是德國德爾門霍斯特的漢莎科學學院的研究員。他在普林斯頓大學獲得數學學士學位,在麻省理工學院獲得數學與語言學的跨學科碩士學位,以及在密西根大學獲得實驗心理學的博士學位。他的研究對用戶介面評估、程式語言設計、認知輔助技術、教育技術以及因果歸因和學習的認知理論做出了貢獻。他因被任命為ACM SIGCHI學院、獲得SIGCHI社會影響獎以及ACM SIGACCESS傑出貢獻獎而受到表彰。