Natural Language Generation
暫譯: 自然語言生成

Reiter, Ehud

  • 出版商: Springer
  • 出版日期: 2024-10-16
  • 售價: $2,470
  • 貴賓價: 9.5$2,347
  • 語言: 英文
  • 頁數: 202
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031685814
  • ISBN-13: 9783031685811
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

In late 2022, the prominence of Natural Language Generation (NLG) surged with the advent of advanced language models like ChatGPT. While these developments have captivated both academic and commercial sectors, the focus has predominantly been on the latest innovations, often overlooking the rich history and foundational work in NLG. This book aims to provide a comprehensive overview of NLG, encompassing not only language models but also alternative approaches, user requirements, evaluation methods, safety and testing protocols, and practical applications. Drawing on decades of NLG research, the book is designed to be a valuable resource for both researchers and developers, offering insights that remain relevant far beyond the current technological landscape.

Natural Language Generation focuses on data-to-text but also looks at other types of NLG including text summarization. The book takes a holistic approach to NLG, looking at requirements (what users are looking for), design, data issues, testing, evaluation, safety and ethical issues as well as technology. The holistic approach is unique to this book and is very valuable for people building real-world NLG systems, and for academics and researchers who are interested in applied NLG.

The author, who previously co-authored a seminal NLG book in 2000, emphasizes high-level concepts and methodologies, ensuring the material's longevity and utility. The book is structured to balance technical depth with practical relevance, including chapters on rule-based and neural NLG approaches, user requirements, rigorous evaluation techniques, and safety considerations. Real-world applications, particularly in journalism, business intelligence, summarization, and medicine, are explored to illustrate NLG's potential and scalability. With personal anecdotes and examples from the author's experiences, this book provides a unique and engaging perspective on the evolving field of NLG, making it an indispensable guide for those looking to harness the power of language generation technologies.

商品描述(中文翻譯)

在2022年底,隨著像ChatGPT這樣的先進語言模型的出現,自然語言生成(Natural Language Generation, NLG)的重要性急劇上升。儘管這些發展吸引了學術界和商業界的關注,但焦點主要集中在最新的創新上,往往忽略了NLG的豐富歷史和基礎工作。本書旨在提供NLG的全面概述,不僅涵蓋語言模型,還包括替代方法、用戶需求、評估方法、安全和測試協議以及實際應用。基於數十年的NLG研究,本書旨在成為研究人員和開發人員的寶貴資源,提供的見解在當前技術環境之外仍然具有相關性。

《自然語言生成》專注於數據轉換為文本,但也考慮其他類型的NLG,包括文本摘要。本書採取整體方法來看待NLG,探討需求(用戶所尋求的)、設計、數據問題、測試、評估、安全和倫理問題以及技術。這種整體方法是本書的獨特之處,對於構建現實世界NLG系統的人士,以及對應用NLG感興趣的學者和研究人員來說,具有很高的價值。

作者在2000年共同撰寫了一本開創性的NLG書籍,強調高層次的概念和方法論,確保材料的持久性和實用性。本書的結構旨在平衡技術深度與實際相關性,包括基於規則和神經NLG方法、用戶需求、嚴謹的評估技術和安全考量的章節。探索現實世界的應用,特別是在新聞業、商業智能、摘要和醫學領域,以說明NLG的潛力和可擴展性。通過作者的個人轶事和經驗示例,本書提供了對不斷發展的NLG領域獨特而引人入勝的視角,使其成為希望利用語言生成技術的讀者不可或缺的指南。

作者簡介

Ehud Reiter is a Professor of Computing Science at the University of Aberdeen and had been Chief Scientist of Arria NLG (which he cofounded). In both roles he works on Natural Language Generation. He has been working on NLG since getting his PhD in NLG in 1990 (from Harvard), and is one of the most published and cited authors in the field. He has over 200 academic papers and 8 patents. He was chair of the Association for Computation Linguistics Special Interest Group in Generation (SIGGEN) from 2019-2022, and was awarded a Test of Time award for his NLG work in 2022.

作者簡介(中文翻譯)

Ehud Reiter 是阿伯丁大學的計算科學教授,並曾擔任他共同創辦的 Arria NLG 的首席科學家。在這兩個角色中,他專注於自然語言生成(Natural Language Generation, NLG)。自1990年獲得哈佛大學的NLG博士學位以來,他一直在從事NLG的研究,是該領域中發表和被引用最多的作者之一。他擁有超過200篇學術論文和8項專利。2019年至2022年,他擔任計算語言學協會生成特別興趣小組(SIGGEN)的主席,並於2022年因其NLG工作獲得了「時代考驗獎」(Test of Time award)。