Multimodal and Tensor Data Analytics for Industrial Systems Improvement (工業系統改善的多模態與張量數據分析)

Gaw, Nathan, Pardalos, Panos M., Gahrooei, Mostafa Reisi

  • 出版商: Springer
  • 出版日期: 2024-05-17
  • 售價: $5,610
  • 貴賓價: 9.5$5,330
  • 語言: 英文
  • 頁數: 394
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031530918
  • ISBN-13: 9783031530913
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This volume covers the latest methodologies for using multimodal data fusion and analytics across several applications. The curated content presents recent developments and challenges in multimodal data analytics and shines a light on a pathway toward new research developments. Chapters are composed by eminent researchers and practitioners who present their research results and ideas based on their expertise. As data collection instruments have improved in quality and quantity for many applications, there has been an unprecedented increase in the availability of data from multiple sources, known as modalities. Modalities express a large degree of heterogeneity in their form, scale, resolution, and accuracy. Determining how to optimally combine the data for prediction and characterization is becoming increasingly important. Several research studies have investigated integrating multimodality data and discussed the challenges and limitations of multimodal data fusion. This volume provides a topical overview of various methods in multimodal data fusion for industrial engineering and operations research applications, such as manufacturing and healthcare.

Advancements in sensing technologies and the shift toward the Internet of Things (IoT) has transformed and will continue to transform data analytics by producing new requirements and more complex forms of data. The abundance of data creates an unprecedented opportunity to design more efficient systems and make near-optimal operational decisions. On the other hand, the structural complexity and heterogeneity of the generated data pose a significant challenge to extracting useful features and patterns for making use of the data and facilitating decision-making. Therefore, continual research is needed to develop new statistical and analytical methodologies that overcome these data challenges and turn them into opportunities.


商品描述(中文翻譯)

本卷涵蓋了在多種應用中使用多模態數據融合和分析的最新方法論。精心策劃的內容展示了多模態數據分析的最新發展和挑戰,並為新的研究發展指明了方向。各章節由著名的研究者和實踐者撰寫,他們根據自己的專業知識呈現研究結果和想法。隨著數據收集工具在質量和數量上的改進,來自多個來源(即模態)的數據可用性前所未有地增加。模態在形式、規模、解析度和準確性上表現出高度的異質性。如何最佳地結合數據以進行預測和特徵描述變得越來越重要。幾項研究探討了多模態數據的整合,並討論了多模態數據融合的挑戰和限制。本卷提供了針對工業工程和運營研究應用(如製造和醫療保健)中多模態數據融合的各種方法的主題概述。

感測技術的進步以及向物聯網(IoT)的轉變,已經改變並將繼續改變數據分析,產生新的需求和更複雜的數據形式。數據的豐富性為設計更高效的系統和做出接近最佳的運營決策創造了前所未有的機會。另一方面,生成數據的結構複雜性和異質性對提取有用特徵和模式以利用數據並促進決策制定構成了重大挑戰。因此,需要持續的研究來開發新的統計和分析方法論,以克服這些數據挑戰並將其轉化為機會。

作者簡介

Nathan Gaw is an Assistant Professor of Data Science in the Department of Operational Sciences at Air Force Institute of Technology, Wright-Patterson AFB, Ohio, USA. His research develops new statistical machine learning algorithms to optimally fuse high-dimensional, multi-modal data sources to support decision making in military, healthcare and remote sensing. He received his B.S.E. and M.S. in biomedical engineering and a Ph.D. in industrial engineering from Arizona State University (ASU), Tempe, AZ, USA, in 2013, 2014, and 2019, respectively. Dr. Gaw was a Postdoctoral Research Fellow at the ASU-Mayo Clinic Center for Innovative Imaging (AMCII), Tempe, AZ, USA, from 2019-2020, and a Postdoctoral Research Fellow in the School of Industrial and Systems Engineering (ISyE) at Georgia Institute of Technology, Atlanta, GA, USA, from 2020-2021. He has also served as chair of the INFORMS Data Mining Society, and a member of IISE and IEEE.

Panos M. Pardalos is Distinguished Professor Emeritus of Industrial and Systems Engineering at the University of Florida. Additionally, he is the Paul and Heidi Brown Preeminent Professor in Industrial & Systems Engineering. He is also an affiliated faculty member of the Computer and Information Science Department, the Hellenic Studies Center, and the Biomedical Engineering Program. He is also the Director of the Center for Applied Optimization. Dr. Pardalos is a world leading expert in global and combinatorial optimization. His recent research interests include network design problems, optimization in telecommunications, e-commerce, data mining, biomedical applications, and massive computing. He has co-authored and co-edited more than 30 books, as well as publishing more than 600 journal articles and conference proceedings. Prof. Pardalos is a Fellow of AAAS (American Association for the Advancement of Science), Fellow of American Institute for Medical and Biological Engineering (AIMBE), andEUROPT. He is a Distinguished International Professor by the Chinese Minister of Education; Honorary Professor of Anhui University of Sciences and Technology, China; Elizabeth Wood Dunlevie Honors Term Professor; Honorary Doctor, V.M. Glushkov Institute of Cybernetics of The National Academy of Sciences of Ukraine; Foreign Associate Member of Reial Academia de Doctors, Spain; and Advisory board member of the Centre for Optimisation and Its Applications, Cardiff University, UK. He is also the recipient of UF 2009 International Educator Award; Medal (in recognition of broad contributions in science and engineering) of the University of Catani, Italy; EURO Gold Medal (EGM); Honorary Doctor of Science Degree, Wilfrid Laurier University, Canada; Senior Fulbright Specialist Award; University of Florida Research Foundation Professorship; and IBM Achievement Award.

Mostafa Reisi Gahrooei is an Assistant Professor in the Department of Industrial and Systems Engineering at the University of Florida. His research interests focus on data-driven modelling and monitoring complex and distributed systems by developing efficient methodologies and algorithms for modelling high-dimensional and multimodal data. The applications of his work are in precision agriculture, manufacturing, healthcare, and transportation systems. He is a co-director of the Data Informatics for Systems Improvement and Design (DISIDE) lab. Dr. Reisi is a member of the Institute for Operations Research and the Management Sciences (INFORMS) and the Institute of Industrial and Systems Engineers (IISE).

作者簡介(中文翻譯)

Nathan Gaw 是美國俄亥俄州萊特-帕特森空軍基地空軍技術學院運營科學系的數據科學助理教授。他的研究開發新的統計機器學習算法,以最佳方式融合高維度、多模態數據來源,以支持軍事、醫療保健和遙感領域的決策制定。他於2013年、2014年和2019年分別在亞利桑那州立大學(ASU)獲得生物醫學工程學士學位和碩士學位,以及工業工程博士學位。Gaw 博士於2019年至2020年在亞利桑那州立大學-梅約診所創新影像中心(AMCII)擔任博士後研究員,並於2020年至2021年在喬治亞理工學院工業與系統工程學院(ISyE)擔任博士後研究員。他還曾擔任 INFORMS 數據挖掘學會的主席,以及 IISE 和 IEEE 的成員。

Panos M. Pardalos 是佛羅里達大學工業與系統工程的榮譽特聘教授。此外,他還是工業與系統工程領域的保羅與海蒂·布朗傑出教授。他同時也是計算機與信息科學系、希臘研究中心和生物醫學工程計劃的附屬教員。他還是應用優化中心的主任。Pardalos 博士是全球和組合優化領域的世界領先專家。他最近的研究興趣包括網絡設計問題、電信優化、電子商務、數據挖掘、生物醫學應用和大規模計算。他共同撰寫和編輯了超過30本書籍,並發表了超過600篇期刊文章和會議論文。Pardalos 教授是美國科學促進會(AAAS)會士、美國醫療與生物工程學會(AIMBE)會士,以及 EUROPT 的成員。他是中國教育部頒發的傑出國際教授;中國安徽科技大學的名譽教授;伊莉莎白·伍德·鄧勒維榮譽教授;烏克蘭國家科學院 V.M. Glushkov 網絡學院的名譽博士;西班牙 Reial Academia de Doctors 的外國成員;以及英國卡迪夫大學優化及其應用中心的顧問委員會成員。他還獲得了2009年佛羅里達大學國際教育者獎;意大利卡塔尼亞大學的科學與工程廣泛貢獻獎章;EURO 金獎(EGM);加拿大威爾弗里德·勞里埃大學的科學名譽博士學位;高級富布萊特專家獎;佛羅里達大學研究基金會教授職位;以及 IBM 成就獎。

Mostafa Reisi Gahrooei 是佛羅里達大學工業與系統工程系的助理教授。他的研究興趣集中在數據驅動的建模和監控複雜及分佈式系統,通過開發高效的方法論和算法來建模高維度和多模態數據。他的工作應用於精準農業、製造業、醫療保健和交通系統。他是系統改進與設計數據信息學(DISIDE)實驗室的共同主任。Reisi 博士是運營研究與管理科學學會(INFORMS)和工業與系統工程師學會(IISE)的成員。