Two-Dimensional Two-Product Cubic Systems, Vol I: Different Product Structure Vector Fields (二維二乘立方系統,第一卷:不同乘積結構向量場)

Luo, Albert C. J.

  • 出版商: Springer
  • 出版日期: 2024-11-06
  • 售價: $7,240
  • 貴賓價: 9.5$6,878
  • 語言: 英文
  • 頁數: 336
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 303148486X
  • ISBN-13: 9783031484865
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book is the ninth of 15 related monographs, discusses a two product-cubic dynamical system possessing different product-cubic structures and the equilibrium and flow singularity and bifurcations for appearing and switching bifurcations. The appearing bifurcations herein are parabola-saddles, saddle-sources (sinks), hyperbolic-to-hyperbolic-secant flows, and inflection-source (sink) flows. The switching bifurcations for saddle-source (sink) with hyperbolic-to-hyperbolic-secant flows and parabola-saddles with inflection-source (sink) flows are based on the parabola-source (sink), parabola-saddles, inflection-saddles infinite-equilibriums. The switching bifurcations for the network of the simple equilibriums with hyperbolic flows are parabola-saddles and inflection-source (sink) on the inflection-source and sink infinite-equilibriums. Readers will learn new concepts, theory, phenomena, and analysis techniques.

- Two-different product-cubic systems

- Hybrid networks of higher-order equilibriums and flows

- Hybrid series of simple equilibriums and hyperbolic flows

- Higher-singular equilibrium appearing bifurcations

- Higher-order singular flow appearing bifurcations

- Parabola-source (sink) infinite-equilibriums

- Parabola-saddle infinite-equilibriums

- Inflection-saddle infinite-equilibriums

- Inflection-source (sink) infinite-equilibriums

- Infinite-equilibrium switching bifurcations.

商品描述(中文翻譯)

這本書是15本相關專著中的第九本,討論了一個擁有不同產品立方體結構的雙產品立方體動態系統,以及出現和切換分岔的平衡和流動奇異性。這裡提到的出現分岔包括拋物線鞍點、鞍源(匯)、雙曲線到雙曲線割流,以及拐點源(匯)流。鞍源(匯)與雙曲線到雙曲線割流的切換分岔,以及拋物線鞍點與拐點源(匯)流的切換分岔,基於拋物線源(匯)、拋物線鞍點、拐點鞍點的無限平衡。具有雙曲流的簡單平衡網絡的切換分岔為拋物線鞍點和拐點源(匯)在拐點源和匯的無限平衡上。讀者將學習到新的概念、理論、現象和分析技術。

- 兩種不同的產品立方體系統
- 高階平衡和流動的混合網絡
- 簡單平衡和雙曲流的混合系列
- 高階奇異平衡出現的分岔
- 高階奇異流出現的分岔
- 拋物線源(匯)無限平衡
- 拋物線鞍點無限平衡
- 拐點鞍點無限平衡
- 拐點源(匯)無限平衡
- 無限平衡切換分岔。

作者簡介

Dr. Albert C. J. Luo is a Distinguished Research Professor at the Southern Illinois University Edwardsville, in Edwardsville, IL, USA. Dr. Luo worked on Nonlinear Mechanics, Nonlinear Dynamics, and Applied Mathematics. He proposed and systematically developed: (i) the discontinuous dynamical system theory, (ii) analytical solutions for periodic motions in nonlinear dynamical systems, (iii) the theory of dynamical system synchronization, (iv) the accurate theory of nonlinear deformable-body dynamics, (v) new theories for stability and bifurcations of nonlinear dynamical systems. He discovered new phenomena in nonlinear dynamical systems. His methods and theories can help understanding and solving the Hilbert sixteenth problems and other nonlinear physics problems. The main results were scattered in 45 monographs in Springer, Wiley, Elsevier, and World Scientific, over 200 prestigious journal papers, and over 150 peer-reviewed conference papers.

作者簡介(中文翻譯)

阿爾伯特·C·J·羅博士是美國伊利諾伊州愛德華茲維爾南伊利諾伊大學的傑出研究教授。羅博士專注於非線性力學、非線性動力學和應用數學。他提出並系統性地發展了以下幾個理論:(i) 不連續動力系統理論,(ii) 非線性動力系統中週期運動的解析解,(iii) 動力系統同步理論,(iv) 非線性可變形體動力學的精確理論,(v) 非線性動力系統的穩定性和分岔的新理論。他在非線性動力系統中發現了新現象。他的方法和理論有助於理解和解決希爾伯特第十六個問題及其他非線性物理問題。主要成果散見於45本由Springer、Wiley、Elsevier和World Scientific出版的專著、超過200篇的知名期刊論文,以及超過150篇的同行評審會議論文。