Well-Posed Nonlinear Problems: A Study of Mathematical Models of Contact
暫譯: 良好定義的非線性問題:接觸數學模型研究
Sofonea, Mircea
- 出版商: Birkhauser Boston
- 出版日期: 2024-10-29
- 售價: $5,590
- 貴賓價: 9.5 折 $5,311
- 語言: 英文
- 頁數: 405
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031414187
- ISBN-13: 9783031414183
無法訂購
相關主題
商品描述
This monograph presents an original method to unify the mathematical theories of well-posed problems and contact mechanics. The author uses a new concept called the Tykhonov triple to develop a well-posedness theory in which every convergence result can be interpreted as a well-posedness result. This will be useful for studying a wide class of nonlinear problems, including fixed-point problems, inequality problems, and optimal control problems. Another unique feature of the manuscript is the unitary treatment of mathematical models of contact, for which new variational formulations and convergence results are presented. Well-Posed Nonlinear Problems will be a valuable resource for PhD students and researchers studying contact problems. It will also be accessible to interested researchers in related fields, such as physics, mechanics, engineering, and operations research.
商品描述(中文翻譯)
這本專著提出了一種原創方法,旨在統一良定問題和接觸力學的數學理論。作者使用一個名為 Tykhonov triple 的新概念來發展良定性理論,其中每個收斂結果都可以解釋為良定性結果。這將對研究廣泛類別的非線性問題(包括不動點問題、不等式問題和最佳控制問題)非常有用。該手稿的另一個獨特特點是對接觸的數學模型進行統一處理,並提出了新的變分形式和收斂結果。《良定非線性問題》將成為博士生和研究人員研究接觸問題的重要資源。對於物理學、力學、工程學和運籌學等相關領域的研究人員來說,這本書也將是可及的。
作者簡介
His areas of interest and expertise include: multivalued operators, variational and hemivariational inequalities, solid mechanics, contact mechanics and numerical methods for partial differential equations.
Most of his reseach is dedicated to the Mathematical Theory of Contact Mechanics, of which he is one of the main contributors. His ideas and results were published in eight books, four monographs, and more than three hundred research articles.
作者簡介(中文翻譯)
米爾恰·索方尼亞於布加勒斯特大學(羅馬尼亞)獲得博士學位,並在克萊蒙費朗的布萊茲·帕斯卡大學(法國)獲得資格認證。目前,他是佩皮尼昂維亞多米提亞大學(法國)的特聘教授,以及羅馬尼亞科學院數學研究所的榮譽會員。
他的研究興趣和專業領域包括:多值算子、變分和半變分不等式、固體力學、接觸力學以及偏微分方程的數值方法。
他的大部分研究致力於接觸力學的數學理論,他是該領域的主要貢獻者之一。他的思想和成果已發表在八本書籍、四本專著以及三百多篇研究文章中。