Mechanics and Geometry of Enriched Continua

Espath, Luis

  • 出版商: Springer
  • 出版日期: 2024-07-05
  • 售價: $5,040
  • 貴賓價: 9.5$4,788
  • 語言: 英文
  • 頁數: 159
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031289366
  • ISBN-13: 9783031289361
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This monograph presents a comprehensive and rigorous new framework for the theoretical description and modelling of enriched continua. In other words, continua that exhibit more complex behaviour than their conventional counterparts and, in particular, multicomponent systems.
It employs gradient theories, exhibiting multiple transition layers described by phase fields. As a point of departure, we account for multiple continuum kinematic processes, including motion and various phase fields. These gradient theories arise by considering various kinematic processes which are tightly linked to the level of the arbitrariness of the Euler-Cauchy cuts. The surface defining the Euler-Cauchy cut may lose its smoothness along a curve, and the curve may also lose its smoothness at a point. Additionally, we postulate the principle of virtual power on surfaces. Then, the first and second laws of thermodynamics with the power balance provide suitable and consistent choices for the constitutive equations. Finally, the complementary balances, namely the balances on surfaces, are tailored to coincide with different parts of the boundaries of the body. These surface balances are then called environmental surface balances and aid in determining suitable and consistent boundary conditions. Ultimately, the environmental surface power balance is relaxed to yield an environmental surface imbalance of powers, rendering a more general type of boundary condition.

A detailed introduction sets the scene for the mathematical chapters that follow, ensuring that graduate students and newcomers can profit from the material presented.

商品描述(中文翻譯)

本專著提出了一個全面且嚴謹的新框架,用於理論描述和建模豐富的連續體。換句話說,這些連續體表現出比其傳統對應物更複雜的行為,特別是多組分系統。它採用了梯度理論,展現由相場描述的多重過渡層。作為出發點,我們考慮多種連續體運動學過程,包括運動和各種相場。這些梯度理論是通過考慮與歐拉-柯西切割的任意性水平緊密相關的各種運動學過程而產生的。定義歐拉-柯西切割的表面可能在某條曲線上失去其光滑性,而該曲線在某一點上也可能失去光滑性。此外,我們假設在表面上存在虛功原則。然後,熱力學的第一和第二定律與功率平衡提供了合適且一致的本構方程選擇。最後,互補平衡,即表面上的平衡,經過調整以符合物體邊界的不同部分。這些表面平衡被稱為環境表面平衡,有助於確定合適且一致的邊界條件。最終,環境表面功率平衡被放寬,以產生環境表面功率不平衡,從而形成一種更一般的邊界條件。

詳細的介紹為隨後的數學章節奠定了基礎,確保研究生和新手能夠從所呈現的材料中獲益。

作者簡介

Dr. Espath obtained his Engineering Diploma in 2007 at PUCRS, Brazil. He completed a Master's and Doctorate at UFRGS, Brazil, in 2013. Dr. Espath was appointed postdoctoral fellow at KAUST, until 2019. Subsequently, he assumed the role of Research Scientist at RWTH Aachen, Germany, until 2021. In 2022, at RWTH Aachen, Dr. Espath defended his Habilitation thesis in Mathematics in the field of Theoretical Mechanics. His research interests are theoretical and computational mechanics, uncertainty quantification, stochastic optimization, and machine learning.

作者簡介(中文翻譯)

埃斯帕斯博士於2007年在巴西PUCRS獲得工程學文憑。他於2013年在巴西UFRGS完成碩士和博士學位。埃斯帕斯博士於KAUST擔任博士後研究員,直到2019年。隨後,他在德國亞琛工業大學擔任研究科學家,直到2021年。2022年,埃斯帕斯博士在亞琛工業大學辯護了他的數學資格論文,專注於理論力學領域。他的研究興趣包括理論與計算力學、不確定性量化、隨機優化和機器學習。