Deep Statistical Comparison for Meta-Heuristic Stochastic Optimization Algorithms
暫譯: 深度統計比較於元啟發式隨機優化演算法

Eftimov, Tome, Korosec, Peter

  • 出版商: Springer
  • 出版日期: 2022-06-12
  • 售價: $6,340
  • 貴賓價: 9.5$6,023
  • 語言: 英文
  • 頁數: 126
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3030969169
  • ISBN-13: 9783030969165
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

商品描述

Introduction.- Metaheuristic Stochastic Optimization.- Benchmarking Theory.- Introduction to Statistical Analysis.- Approaches to Statistical Comparisons.- Deep Statistical Comparison in Single-Objective Optimization.- Deep Statistical Comparison in Multiobjective Optimization.- DSCTool: A Web-Service-Based E-Learning Tool.- Summary.

商品描述(中文翻譯)

引言.- 元啟發式隨機優化.- 基準理論.- 統計分析簡介.- 統計比較方法.- 單目標優化中的深度統計比較.- 多目標優化中的深度統計比較.- DSCTool:基於網路服務的電子學習工具.- 總結。

作者簡介

Tome Eftimov is currently a research fellow at the Jozef Stefan Institute, Ljubljana, Slovenia where he was awarded his PhD. He has since been a postdoctoral research fellow at the Dept. of Biomedical Data Science, and the Centre for Population Health Sciences, Stanford University, USA, and a research associate at the University of California, San Francisco, USA. His main areas of research include statistics, natural language processing, heuristic optimization, machine learning, and representational learning. His work related to benchmarking in computational intelligence is focused on developing more robust statistical approaches that can be used for the analysis of experimental data.

Peter Korosec received his PhD degree from the Jozef Stefan Postgraduate School, Ljubljana, Slovenia. Since 2002 he has been a researcher at the Computer Systems Department of the Jozef Stefan Institute, Ljubljana. He has participated in the organization of various conferences workshops as program chair or organizer. He has successfully applied his optimization approaches to several real-world problems in engineering. Recently, he has focused on better understanding optimization algorithms so that they can be more efficiently selected and applied to real-world problems.

The authors have presented the related tutorial at the significant related international conferences in Evolutionary Computing, including GECCO, PPSN, and SSCI.

作者簡介(中文翻譯)

Tome Eftimov 目前是斯洛維尼亞盧布爾雅那的約瑟夫·斯特凡研究所的研究員,並在此獲得博士學位。此後,他曾在美國斯坦福大學生物醫學數據科學系和人口健康科學中心擔任博士後研究員,並在美國加州大學舊金山分校擔任研究助理。他的主要研究領域包括統計學、自然語言處理、啟發式優化、機器學習和表徵學習。他在計算智能基準測試方面的工作專注於開發更穩健的統計方法,以用於實驗數據的分析。

Peter Korosec 於斯洛維尼亞盧布爾雅那的約瑟夫·斯特凡研究所研究生院獲得博士學位。自2002年以來,他一直是約瑟夫·斯特凡研究所計算機系統部門的研究員。他參與了多個會議工作坊的組織,擔任程序主席或組織者。他成功地將其優化方法應用於多個工程中的現實問題。最近,他專注於更好地理解優化算法,以便能夠更有效地選擇和應用於現實問題。

作者在與進化計算相關的重要國際會議上展示了相關的教程,包括 GECCO、PPSN 和 SSCI。