B-Series: Algebraic Analysis of Numerical Methods
暫譯: B系列:數值方法的代數分析
Butcher, John C.
- 出版商: Springer
- 出版日期: 2021-04-02
- 售價: $5,010
- 貴賓價: 9.5 折 $4,760
- 語言: 英文
- 頁數: 310
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030709558
- ISBN-13: 9783030709556
-
相關分類:
微積分 Calculus、數值分析 Numerical-analysis
海外代購書籍(需單獨結帳)
商品描述
This book offers a self-contained introduction to B-series by a pioneer of the subject. After a preliminary chapter providing background on differential equations and numerical methods, a broad exposition of graphs and trees is presented. This is essential preparation for the third chapter, in which the main ideas of B-series are introduced and developed. In chapter four, algebraic aspects are further analysed in the context of integration methods, a generalization of Runge-Kutta methods to infinite index sets. Chapter five, on explicit and implicit Runge-Kutta methods, contrasts the B-series and classical approaches. Chapter six, on multivalue methods, gives a traditional review of linear multistep methods and expands this to general linear methods, for which the B-series approach is both natural and essential. The final chapter introduces some aspects of geometric integration, from a B-series point of view.
Placing B-series at the centre of its most important applications makes this book an invaluable resource for scientists, engineers and mathematicians who depend on computational modelling, not to mention computational scientists who carry out research on numerical methods in differential equations. In addition to exercises with solutions and study notes, a number of open-ended projects are suggested. This combination makes the book ideal as a textbook for specialised courses on numerical methods for differential equations, as well as suitable for self-study.
商品描述(中文翻譯)
B系列,也稱為Butcher系列,是一種代數工具,用於分析常微分方程的解,包括近似解。通過這些系列的公式化和操作,可以評估數值方法的特性。特別是,Runge-Kutta方法依賴於B系列,以便以簡潔而優雅的方式推導高階和高效的方法。然而,B系列的實用性遠不止於此,還為設計和構建高精度和高效的多值方法開闢了一條道路。
本書由該領域的先驅提供了一個自成體系的B系列介紹。在提供有關微分方程和數值方法背景的初步章節之後,呈現了圖形和樹的廣泛闡述。這是第三章的必要準備,在該章中介紹並發展了B系列的主要思想。在第四章中,代數方面在積分方法的背景下進一步分析,這是Runge-Kutta方法對無限指數集的概括。第五章關於顯式和隱式Runge-Kutta方法,對比了B系列和傳統方法。第六章關於多值方法,對線性多步驟方法進行了傳統回顧,並將其擴展到一般線性方法,對於這些方法,B系列方法既自然又必不可少。最後一章從B系列的角度介紹了一些幾何積分的方面。
將B系列置於其最重要應用的中心,使本書成為科學家、工程師和數學家不可或缺的資源,這些人依賴於計算建模,更不用說進行微分方程數值方法研究的計算科學家。除了附有解答的練習和學習筆記外,還建議了一些開放式項目。這種組合使本書成為微分方程數值方法專門課程的理想教科書,也適合自學。
作者簡介
John is a fellow of the New Zealand Mathematical Society, the Royal Society of New Zealand and the Society for Industrial and Applied Mathematics. He is an Officer of the New Zealand Order of Merit and his awards include the Jones Medal of the Royal Society of New Zealand and the Van Wijngaarden Award of the Centrum Wiskunde & Informatica, Amsterdam.
作者簡介(中文翻譯)
約翰·布徹(John Butcher)被認為是現代Runge-Kutta方法理論的創始人及布徹群(Butcher group)的發現者。他在數值分析方面的貢獻包括隱式Runge-Kutta方法的公式化,特別是基於高斯-勒讓德(Gauss-Legendre)、拉度(Radau)和洛巴托(Lobatto)積分法的方法、一般線性方法、顯式Runge-Kutta方法的階數障礙、有效階數、非線性穩定性和階數箭頭。他的名字與布徹表(Butcher tableau)和布徹乘積(Butcher product)相關聯,以及布徹群和布徹級數(Butcher series)。
約翰是紐西蘭數學學會、新西蘭皇家學會及工業與應用數學學會的會員。他是紐西蘭功勳勳章的官員,並且獲得了紐西蘭皇家學會的瓊斯獎(Jones Medal)和阿姆斯特丹數學與計算機科學中心的范·維因根獎(Van Wijngaarden Award)。