Federated Learning Systems: Towards Next-Generation AI
Rehman, Muhammad Habib Ur, Gaber, Mohamed Medhat
買這商品的人也買了...
-
$1,880$1,786 -
$7,030$6,679 -
$4,510$4,285 -
$6,660$6,327 -
$4,880$4,636 -
$5,450$5,178 -
$2,600$2,470 -
$6,380$6,061 -
$6,660$6,327 -
$7,030$6,679 -
$1,670$1,587 -
$4,530$4,304 -
$1,800$1,710 -
$5,710$5,425 -
$4,530$4,304 -
$7,050$6,698 -
$7,780$7,391 -
$4,050$3,848 -
$1,110$1,055 -
$1,110$1,055 -
$900$855 -
$1,020$969 -
$2,350$2,233 -
$2,300$2,185 -
$1,670$1,587
相關主題
商品描述
This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors' control of their critical data.
商品描述(中文翻譯)
本書從多個角度探討研究領域,包括文獻計量分析、評論、實證分析、平台及未來應用。集中訓練深度學習和機器學習模型不僅會產生高昂的數據傳輸成本,還會引發數據提供者的隱私保護問題。本書旨在針對研究人員和實務工作者,深入探討聯邦學習研究中的核心議題,以轉型下一代人工智慧應用。聯邦學習使得學習模型能夠分佈在各個設備和系統上,這些設備和系統進行初步訓練,並將更新的模型屬性報告給集中式雲伺服器,以進行安全且保護隱私的屬性聚合和全球模型開發。聯邦學習在隱私、通信效率、數據安全以及貢獻者對其關鍵數據的控制方面具有優勢。