Federated Learning: Privacy and Incentive
暫譯: 聯邦學習:隱私與激勵
Yang, Qiang, Fan, Lixin, Yu, Han
- 出版商: Springer
- 出版日期: 2020-11-26
- 售價: $3,560
- 貴賓價: 9.5 折 $3,382
- 語言: 英文
- 頁數: 286
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3030630757
- ISBN-13: 9783030630751
海外代購書籍(需單獨結帳)
商品描述
This book contains three main parts. First, it introduces different privacy-preserving methods for protecting a Federated Learning model against different types of attacks such as Data Leakage and/or Data Poisoning. Second, the book presents incentive mechanisms which aim to encourage individuals to participate in the Federated Learning ecosystems. Last but not the least, this book also describes how Federated Learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both academia and industries, who would like to learn federated learning from scratch, practice its implementation, and apply it in their own business.
Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing are preferred.
商品描述(中文翻譯)
本書提供了一個全面且自足的聯邦學習(Federated Learning)介紹,涵蓋從基本知識和理論到各種關鍵應用,並且隱私和激勵因素是全書的重點。由於聯邦學習在《一般資料保護條例》(GDPR)發布後變得越來越受歡迎,因此本書的出版時機恰到好處。聯邦學習旨在使機器模型能夠在不讓各方暴露私人數據給其他方的情況下進行協作訓練。這種設定遵循了資料隱私保護的法規要求,例如GDPR。
本書包含三個主要部分。首先,它介紹了不同的隱私保護方法,以保護聯邦學習模型免受數據洩漏(Data Leakage)和/或數據中毒(Data Poisoning)等不同類型攻擊的影響。其次,本書提出了激勵機制,旨在鼓勵個體參與聯邦學習生態系統。最後但同樣重要的是,本書還描述了聯邦學習如何應用於產業和商業,以解決數據孤島和隱私保護問題。本書適合來自學術界和產業界的讀者,無論是希望從零開始學習聯邦學習、實踐其實現,還是將其應用於自己的業務。
讀者預期具備一些線性代數、微積分和神經網絡的基本理解。此外,具備金融科技(FinTech)和行銷領域的知識者將更受歡迎。