Deep Learning Techniques for Biomedical and Health Informatics
暫譯: 生物醫學與健康資訊的深度學習技術

Dash, Sujata, Acharya, Biswa Ranjan, Mittal, Mamta

  • 出版商: Springer
  • 出版日期: 2019-11-25
  • 售價: $7,920
  • 貴賓價: 9.5$7,524
  • 語言: 英文
  • 頁數: 383
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3030339653
  • ISBN-13: 9783030339654
  • 相關分類: DeepLearning
  • 海外代購書籍(需單獨結帳)

商品描述

This book presents a collection of state-of-the-art approaches for deep-learning-based biomedical and health-related applications. The aim of healthcare informatics is to ensure high-quality, efficient health care, and better treatment and quality of life by efficiently analyzing abundant biomedical and healthcare data, including patient data and electronic health records (EHRs), as well as lifestyle problems. In the past, it was common to have a domain expert to develop a model for biomedical or health care applications; however, recent advances in the representation of learning algorithms (deep learning techniques) make it possible to automatically recognize the patterns and represent the given data for the development of such model.

This book allows new researchers and practitioners working in the field to quickly understand the best-performing methods. It also enables them to compare different approaches and carry forward their research in an important area that has a direct impact on improving the human life and health.

It is intended for researchers, academics, industry professionals, and those at technical institutes and R&D organizations, as well as students working in the fields of machine learning, deep learning, biomedical engineering, health informatics, and related fields.

商品描述(中文翻譯)

本書呈現了一系列最先進的基於深度學習的生物醫學和健康相關應用方法。健康資訊學的目標是通過有效分析大量的生物醫學和健康數據,包括病人數據和電子健康紀錄(EHRs),以及生活方式問題,來確保高品質、高效率的醫療服務,並改善治療效果和生活品質。在過去,通常需要領域專家來為生物醫學或健康護理應用開發模型;然而,最近在學習算法(深度學習技術)表示方面的進展,使得自動識別模式並表示給定數據以開發此類模型成為可能。

本書使新研究者和從業者能夠快速了解最佳表現的方法。它還使他們能夠比較不同的方法,並在這一對改善人類生活和健康有直接影響的重要領域中推進他們的研究。

本書的讀者對象包括研究人員、學術界人士、業界專業人士,以及技術學院和研發機構的相關人員,還有在機器學習、深度學習、生物醫學工程、健康資訊學及相關領域學習的學生。