Deep Learning Techniques for Biomedical and Health Informatics
暫譯: 生物醫學與健康資訊的深度學習技術
Agarwal, Basant, Balas, Valentina Emilia, Jain, Lakhmi C.
- 出版商: Academic Press
- 出版日期: 2020-01-14
- 售價: $5,470
- 貴賓價: 9.5 折 $5,197
- 語言: 英文
- 頁數: 367
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0128190612
- ISBN-13: 9780128190616
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
商品描述
Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing.
- Examines a wide range of Deep Learning applications for Biomedical Engineering and Health Informatics, including Deep Learning for drug discovery, clinical decision support systems, disease diagnosis, prediction and monitoring
- Discusses Deep Learning applied to Electronic Health Records (EHR), including health data structures and management, deep patient similarity learning, natural language processing, and how to improve clinical decision-making
- Provides detailed coverage of Deep Learning for medical image processing, including optimizing medical big data, brain image analysis, brain tumor segmentation in MRI imaging, and the future of biomedical image analysis
商品描述(中文翻譯)
《深度學習技術於生物醫學與健康資訊學》為讀者提供了基於深度學習的生物醫學與健康資訊學的最新技術。本書不僅涵蓋了最佳表現的方法,還介紹了實作方法。每一章節都包含所有必要的前置方法論,讓新研究者和實務工作者能夠非常受用。章節內容從基本方法論到進階方法,詳細描述了所提出的方法,並對實驗結果進行全面的批判性討論,以及這些結果如何應用於生物醫學工程、電子健康紀錄和醫學影像處理。
- 檢視生物醫學工程與健康資訊學中各種深度學習應用,包括用於藥物發現、臨床決策支持系統、疾病診斷、預測與監測的深度學習
- 討論應用於電子健康紀錄(EHR)的深度學習,包括健康數據結構與管理、深度病人相似性學習、自然語言處理,以及如何改善臨床決策
- 提供醫學影像處理中深度學習的詳細涵蓋,包括優化醫學大數據、大腦影像分析、MRI影像中的腦腫瘤分割,以及生物醫學影像分析的未來