Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Interventio
暫譯: 大規模生物醫學數據標註與專家標籤合成及硬體感知學習於醫學影像與電腦輔助介入

Zhou, Luping, Heller, Nicholas, Shi, Yiyu

  • 出版商: Springer
  • 出版日期: 2019-11-21
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 154
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3030336417
  • ISBN-13: 9783030336417
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book constitutes the refereed joint proceedings of the 4th International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2019, the First International Workshop on Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention, HAL-MICCAI 2019, and the Second International Workshop on Correction of Brainshift with Intra-Operative Ultrasound, CuRIOUS 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2019, in Shenzhen, China, in October 2019.

The 8 papers presented at LABELS 2019, the 5 papers presented at HAL-MICCAI 2019, and the 3 papers presented at CuRIOUS 2019 were carefully reviewed and selected from numerous submissions. The LABELS papers present a variety of approaches for dealing with a limited number of labels, from semi-supervised learning to crowdsourcing. The HAL-MICCAI papers cover a wide set of hardware applications in medical problems, including medical image segmentation, electron tomography, pneumonia detection, etc. The CuRIOUS papers provide a snapshot of the current progress in the field through extended discussions and provide researchers an opportunity to characterize their image registration methods on newly released standardized datasets of iUS-guided brain tumor resection.


商品描述(中文翻譯)

本書是2019年10月在中國深圳舉行的第22屆國際醫學影像與計算機輔助介入會議(MICCAI 2019)期間,舉辦的第四屆國際生物醫學數據大規模標註與專家標籤合成研討會(LABELS 2019)、第一屆醫學影像與計算機輔助介入的硬體感知學習國際研討會(HAL-MICCAI 2019)以及第二屆術中超聲波腦位移修正國際研討會(CuRIOUS 2019)的經過審稿的聯合會議論文集。

在LABELS 2019上發表的8篇論文、在HAL-MICCAI 2019上發表的5篇論文以及在CuRIOUS 2019上發表的3篇論文均經過仔細審查並從眾多投稿中選出。LABELS的論文提出了多種處理有限標籤數量的方法,從半監督學習到眾包。HAL-MICCAI的論文涵蓋了醫學問題中的各種硬體應用,包括醫學影像分割、電子斷層成像、肺炎檢測等。CuRIOUS的論文通過擴展討論提供了該領域當前進展的快照,並為研究人員提供了在新發布的標準化iUS引導腦腫瘤切除數據集上描述其影像配準方法的機會。

類似商品