Theory of Information and Its Value
暫譯: 資訊理論及其價值
Ruslan L. Stratonovich , Roman V. Belavkin , Panos M. Pardalos , Jose C. Principe
- 出版商: Springer
- 出版日期: 2020-01-15
- 售價: $5,260
- 貴賓價: 9.5 折 $4,997
- 語言: 英文
- 頁數: 415
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030228320
- ISBN-13: 9783030228323
海外代購書籍(需單獨結帳)
商品描述
This English version of Ruslan L. Stratonovich's Theory of Information (1975) builds on theory and provides methods, techniques, and concepts toward utilizing critical applications. Unifying theories of information, optimization, and statistical physics, the value of information theory has gained recognition in data science, machine learning, and artificial intelligence. With the emergence of a data-driven economy, progress in machine learning, artificial intelligence algorithms, and increased computational resources, the need for comprehending information is essential. This book is even more relevant today than when it was first published in 1975. It extends the classic work of R.L. Stratonovich, one of the original developers of the symmetrized version of stochastic calculus, filtering theory, to name just two topics.
Each chapter begins with basic, fundamental ideas, supported by clear examples; the material then advances to great detail and depth. The reader is not required to be familiar with the more difficult and specific material. Rather, the treasure trove of examples of stochastic processes and problems makes this book accessible to a wide readership of researchers, postgraduates, and undergraduate students in mathematics, engineering, physics and computer science who are specializing in information theory, data analysis, or machine learning.
商品描述(中文翻譯)
這本由 Ruslan L. Stratonovich 所著的《信息理論》(1975 年)英文版建立在理論基礎上,提供了方法、技術和概念,以便利用關鍵應用。統一的信息理論、優化和統計物理學,信息理論的價值在數據科學、機器學習和人工智慧中獲得了認可。隨著數據驅動經濟的興起、機器學習和人工智慧算法的進步以及計算資源的增加,理解信息的需求變得至關重要。這本書在今天的相關性甚至超過了1975年首次出版時。它擴展了 R.L. Stratonovich 的經典著作,他是隨機微積分對稱化版本的原始開發者之一,過濾理論等主題。
每一章都以基本的、根本的概念開始,並輔以清晰的例子;然後材料進一步深入到詳細和深度。讀者不需要熟悉更困難和具體的材料。相反,隨機過程和問題的豐富例子使這本書對於專注於信息理論、數據分析或機器學習的數學、工程、物理和計算機科學的研究人員、研究生和本科生都變得易於接觸。