Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics
暫譯: 醫學影像與臨床資訊的深度學習與卷積神經網絡
Lu, Le, Wang, Xiaosong, Carneiro, Gustavo
- 出版商: Springer
- 出版日期: 2020-10-01
- 售價: $7,250
- 貴賓價: 9.5 折 $6,888
- 語言: 英文
- 頁數: 461
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3030139719
- ISBN-13: 9783030139711
-
相關分類:
DeepLearning
-
其他版本:
Deep Learning and Convolutional Neural Networks for Medical Image Computing: Disease Detection, Organ Segmentation, and Database Construction and Mini
海外代購書籍(需單獨結帳)
相關主題
商品描述
The book's chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval.
The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation.
商品描述(中文翻譯)
本書回顧了深度學習在高效能穩健疾病檢測、醫學影像計算(放射學和病理學影像模式)中穩健且準確的器官分割,以及大型放射學數據庫的建構與挖掘方面的最新技術。特別聚焦於卷積神經網絡(Convolutional Neural Networks)和循環神經網絡(Recurrent Neural Networks),如長短期記憶網絡(LSTM),並使用眾多實際範例來補充理論。
本書的主要特點如下:強調深度神經網絡如何用於解決新的問題和協議,以及應對醫學影像計算中的當前挑戰;提供最新研究和文獻的全面回顧;描述一系列不同的方法,利用深度學習進行2D和3D醫學影像中的物體或地標檢測任務。此外,本書還檢視了使用深度學習原則進行醫學影像語義分割的廣泛技術選擇;介紹了一種針對大型胸部X光影像數據庫的文本和影像深度嵌入的新方法;並討論了如何使用深度學習關聯圖來組織來自真實臨床實踐的大量放射學發現,實現基於語義相似性的檢索。
本書的目標讀者是能夠理解影像處理、計算機視覺和醫學影像分析一般概念的專業工程師、科學家或研究生。他們能夠將計算機科學和數學原則應用於問題解決實踐。可能需要對一些更高級的主題有一定程度的熟悉:影像形成與增強、影像理解、醫學應用中的視覺識別、統計學習、深度神經網絡、結構化預測和影像分割。
作者簡介
Dr. Le Lu is the Director of Ping An Technology US Research Labs, and an adjunct faculty member at Johns Hopkins University, USA.
Dr. Xiaosong Wang is a Senior Applied Research Scientist at Nvidia Corp., USA.
Dr. Gustavo Carneiro is an Associate Professor at the University of Adelaide, Australia.
Dr. Lin Yang is an Associate Professor at the University of Florida, USA.
作者簡介(中文翻譯)
盧樂博士是平安科技美國研究實驗室的主任,並且是美國約翰霍普金斯大學的兼任教員。
王小松博士是美國Nvidia公司的高級應用研究科學家。
古斯塔沃·卡內羅博士是澳大利亞阿德萊德大學的副教授。
楊林博士是美國佛羅里達大學的副教授。