Big Data Privacy Preservation for Cyber-Physical Systems
暫譯: 網路物理系統的大數據隱私保護

Pan, Miao, Wang, Jingyi, Errapotu, Sai Mounika

  • 出版商: Springer
  • 出版日期: 2019-04-04
  • 售價: $2,400
  • 貴賓價: 9.5$2,280
  • 語言: 英文
  • 頁數: 73
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3030133699
  • ISBN-13: 9783030133696
  • 相關分類: 大數據 Big-data
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This SpringerBrief mainly focuses on effective big data analytics for CPS, and addresses the privacy issues that arise on various CPS applications. The authors develop a series of privacy preserving data analytic and processing methodologies through data driven optimization based on applied cryptographic techniques and differential privacy in this brief. This brief also focuses on effectively integrating the data analysis and data privacy preservation techniques to provide the most desirable solutions for the state-of-the-art CPS with various application-specific requirements.

Cyber-physical systems (CPS) are the "next generation of engineered systems," that integrate computation and networking capabilities to monitor and control entities in the physical world. Multiple domains of CPS typically collect huge amounts of data and rely on it for decision making, where the data may include individual or sensitive information, for e.g., smart metering, intelligent transportation, healthcare, sensor/data aggregation, crowd sensing etc. This brief assists users working in these areas and contributes to the literature by addressing data privacy concerns during collection, computation or big data analysis in these large scale systems. Data breaches result in undesirable loss of privacy for the participants and for the entire system, therefore identifying the vulnerabilities and developing tools to mitigate such concerns is crucial to build high confidence CPS.

This Springerbrief targets professors, professionals and research scientists working in Wireless Communications, Networking, Cyber-Physical Systems and Data Science. Undergraduate and graduate-level students interested in Privacy Preservation of state-of-the-art Wireless Networks and Cyber-Physical Systems will use this Springerbrief as a study guide.


商品描述(中文翻譯)

這本SpringerBrief主要專注於針對網路物理系統(CPS)的有效大數據分析,並解決各種CPS應用中出現的隱私問題。作者通過基於應用密碼學技術和差分隱私的數據驅動優化,開發了一系列隱私保護的數據分析和處理方法。本書還專注於有效整合數據分析和數據隱私保護技術,以提供最理想的解決方案,滿足各種應用特定需求的先進CPS。

網路物理系統(CPS)是“下一代工程系統”,它們整合了計算和網絡能力,以監控和控制物理世界中的實體。CPS的多個領域通常會收集大量數據並依賴這些數據進行決策,這些數據可能包括個人或敏感信息,例如智能計量、智能交通、醫療保健、傳感器/數據聚合、群眾感知等。本書幫助在這些領域工作的用戶,並通過解決在這些大型系統中收集、計算或大數據分析過程中的數據隱私問題,為文獻做出貢獻。數據洩露會導致參與者和整個系統的隱私損失,因此識別漏洞並開發工具以減輕這些問題對於建立高信任度的CPS至關重要。

這本SpringerBrief的目標讀者是從事無線通信、網絡、網路物理系統和數據科學的教授、專業人士和研究科學家。對於有興趣於先進無線網絡和網路物理系統的隱私保護的本科生和研究生來說,這本SpringerBrief將作為學習指南。