Privacy-Enhancing Fog Computing and Its Applications (SpringerBriefs in Electrical and Computer Engineering)
暫譯: 隱私增強的霧計算及其應用(電機與計算機工程系列)

Xiaodong Lin

  • 出版商: Springer
  • 出版日期: 2018-11-20
  • 售價: $2,400
  • 貴賓價: 9.5$2,280
  • 語言: 英文
  • 頁數: 104
  • 裝訂: Paperback
  • ISBN: 3030021122
  • ISBN-13: 9783030021122
  • 相關分類: Edge computing
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This SpringerBrief  covers the security and privacy challenges in fog computing, and proposes a  new secure and privacy-preserving mechanisms to resolve these challenges for securing fog-assisted IoT applications. Chapter 1 introduces the architecture of fog-assisted IoT applications and the security and privacy challenges in fog computing. Chapter 2 reviews several promising privacy-enhancing techniques and illustrates examples on how to leverage these techniques to enhance the privacy of users in fog computing. Specifically,  the authors divide the existing privacy-enhancing techniques into three categories: identity-hidden techniques, location privacy protection and data privacy enhancing techniques. The research is of great importance since security and privacy problems faced by fog computing impede the healthy development of its enabled IoT applications.

 

With the advanced privacy-enhancing techniques, the authors propose three secure and privacy-preserving protocols for fog computing applications, including smart parking navigation, mobile crowdsensing and smart grid.  Chapter 3 introduces identity privacy leakage in smart parking navigation systems, and proposes a privacy-preserving smart parking navigation system to prevent identity privacy exposure and support efficient parking guidance retrieval through road-side units (fogs) with high retrieving probability and security guarantees. Chapter 4 presents the location privacy leakage, during task allocation in mobile crowdsensing, and propose a strong privacy-preserving task allocation scheme that enables location-based task allocation and reputation-based report selection without exposing knowledge about the location and reputation for participators in mobile crowdsensing. Chapter 5 introduces the data privacy leakage in smart grid, and proposes an efficient and privacy-preserving smart metering protocol to allow collectors (fogs) to achieve real-time measurement collection with privacy-enhanced data aggregation. Finally, conclusions and future research directions are given in Chapter 6.

 This brief validates the significant feature extension and efficiency improvement of IoT devices without sacrificing the security and privacy of users against dishonest fog nodes. It also provides valuable insights on the security and privacy protection for fog-enabled IoT applications. Researchers and professionals who carry out research on security and privacy in wireless communication will want to purchase this SpringerBrief.  Also, advanced level students,  whose main research area is mobile network security will also be interested in this SpringerBrief. 


商品描述(中文翻譯)

這本 SpringerBrief 涵蓋了雲端計算中的安全性和隱私挑戰,並提出了一種新的安全和隱私保護機制,以解決這些挑戰,確保雲端輔助的物聯網應用的安全性。第一章介紹了雲端輔助物聯網應用的架構以及雲端計算中的安全性和隱私挑戰。第二章回顧了幾種有前景的隱私增強技術,並舉例說明如何利用這些技術來增強雲端計算中用戶的隱私。具體而言,作者將現有的隱私增強技術分為三類:身份隱藏技術、位置隱私保護和數據隱私增強技術。這項研究具有重要意義,因為雲端計算面臨的安全性和隱私問題妨礙了其支持的物聯網應用的健康發展。

通過先進的隱私增強技術,作者為雲端計算應用提出了三種安全和隱私保護的協議,包括智能停車導航、移動群眾感知和智能電網。第三章介紹了智能停車導航系統中的身份隱私洩漏,並提出了一種隱私保護的智能停車導航系統,以防止身份隱私暴露,並通過路邊單元(雲端)支持高檢索概率和安全保證的高效停車指導檢索。第四章介紹了在移動群眾感知中的任務分配過程中的位置隱私洩漏,並提出了一種強隱私保護的任務分配方案,該方案能夠實現基於位置的任務分配和基於聲譽的報告選擇,而不暴露參與者在移動群眾感知中的位置和聲譽知識。第五章介紹了智能電網中的數據隱私洩漏,並提出了一種高效且隱私保護的智能計量協議,允許收集者(雲端)實現實時測量收集,並進行隱私增強的數據聚合。最後,第六章給出了結論和未來的研究方向。

這本簡報驗證了物聯網設備在不犧牲用戶對不誠實雲端節點的安全性和隱私的情況下,顯著擴展了功能並提高了效率。它還提供了有關雲端支持的物聯網應用的安全性和隱私保護的寶貴見解。從事無線通信安全和隱私研究的研究人員和專業人士將希望購買這本 SpringerBrief。此外,主要研究領域為移動網絡安全的高級學生也會對這本 SpringerBrief 感興趣。