Stable Mutations for Evolutionary Algorithms
暫譯: 穩定突變在演化演算法中的應用

Obuchowicz, Andrzej

  • 出版商: Springer
  • 出版日期: 2019-12-10
  • 售價: $4,510
  • 貴賓價: 9.5$4,285
  • 語言: 英文
  • 頁數: 164
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 303013184X
  • ISBN-13: 9783030131845
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book presents a set of theoretical and experimental results that describe the features of the wide family of α-stable distributions (the normal distribution also belongs to this class) and their various applications in the mutation operator of evolutionary algorithms based on real-number representation of the individuals, and, above all, equip these algorithms with features that enrich their effectiveness in solving multi-modal, multi-dimensional global optimization problems. The overall conclusion of the research presented is that the appropriate choice of probabilistic model of the mutation operator for an optimization problem is crucial.

Mutation is one of the most important operations in stochastic global optimization algorithms in the n-dimensional real space. It determines the method of search space exploration and exploitation. Most applications of these algorithms employ the normal mutation as a mutation operator. This choice is justified by the central limit theorem but is associated with a set of important limitations. Application of α-stable distributions allows more flexible evolutionary models to be obtained than those with the normal distribution. The book presents theoretical analysis and simulation experiments, which were selected and constructed to expose the most important features of the examined mutation techniques based on α-stable distributions. It allows readers to develop a deeper understanding of evolutionary processes with stable mutations and encourages them to apply these techniques to real-world engineering problems.

商品描述(中文翻譯)

本書呈現了一組理論和實驗結果,描述了廣泛的α-穩定分佈家族的特徵(常態分佈也屬於此類)及其在基於實數表示的個體的演化演算法中的突變運算子中的各種應用,最重要的是,為這些演算法提供了豐富其在解決多模態、多維全域最佳化問題中的有效性的特徵。本研究的整體結論是,為最佳化問題選擇適當的突變運算子的機率模型至關重要。

突變是隨機全域最佳化演算法在n維實數空間中最重要的操作之一。它決定了搜尋空間探索和利用的方法。這些演算法的大多數應用使用常態突變作為突變運算子。這一選擇是由中心極限定理所支持,但也伴隨著一系列重要的限制。應用α-穩定分佈可以獲得比常態分佈更靈活的演化模型。本書呈現了理論分析和模擬實驗,這些實驗被選擇和構建以揭示基於α-穩定分佈的突變技術的最重要特徵。它使讀者能夠更深入地理解具有穩定突變的演化過程,並鼓勵他們將這些技術應用於現實世界的工程問題。