Extensions of Dynamic Programming for Combinatorial Optimization and Data Mining
暫譯: 動態規劃在組合優化與資料探勘中的擴展

Aboueisha, Hassan, Amin, Talha, Chikalov, Igor

  • 出版商: Springer
  • 出版日期: 2019-01-25
  • 售價: $4,600
  • 貴賓價: 9.5$4,370
  • 語言: 英文
  • 頁數: 280
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3030063097
  • ISBN-13: 9783030063092
  • 相關分類: Data-mining
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Dynamic programming is an efficient technique for solving optimization problems. It is based on breaking the initial problem down into simpler ones and solving these sub-problems, beginning with the simplest ones. A conventional dynamic programming algorithm returns an optimal object from a given set of objects. This book develops extensions of dynamic programming, enabling us to (i) describe the set of objects under consideration; (ii) perform a multi-stage optimization of objects relative to different criteria; (iii) count the number of optimal objects; (iv) find the set of Pareto optimal points for bi-criteria optimization problems; and (v) to study relationships between two criteria. It considers various applications, including optimization of decision trees and decision rule systems as algorithms for problem solving, as ways for knowledge representation, and as classifiers; optimization of element partition trees for rectangular meshes, which are used in finite element methods for solving PDEs; and multi-stage optimization for such classic combinatorial optimization problems as matrix chain multiplication, binary search trees, global sequence alignment, and shortest paths. The results presented are useful for researchers in combinatorial optimization, data mining, knowledge discovery, machine learning, and finite element methods, especially those working in rough set theory, test theory, logical analysis of data, and PDE solvers. This book can be used as the basis for graduate courses.


商品描述(中文翻譯)

動態規劃是一種有效的優化問題解決技術。它的基本原理是將初始問題分解為更簡單的子問題,並從最簡單的子問題開始解決這些子問題。傳統的動態規劃算法從給定的物件集合中返回一個最佳物件。本書發展了動態規劃的擴展,使我們能夠 (i) 描述考慮中的物件集合;(ii) 相對於不同標準執行物件的多階段優化;(iii) 計算最佳物件的數量;(iv) 找到雙標準優化問題的帕累托最佳點集合;以及 (v) 研究兩個標準之間的關係。本書考慮了各種應用,包括決策樹和決策規則系統的優化,作為問題解決的算法、知識表示的方式以及分類器;矩形網格的元素劃分樹的優化,這些網格用於有限元素法解決偏微分方程 (PDE);以及對經典組合優化問題如矩陣鏈乘法、二元搜尋樹、全局序列比對和最短路徑的多階段優化。所呈現的結果對於組合優化、資料探勘、知識發現、機器學習和有限元素法的研究人員特別有用,尤其是那些從事粗集理論、測試理論、資料的邏輯分析和偏微分方程求解器的研究者。本書可作為研究生課程的基礎。

最後瀏覽商品 (20)