Optimization with Pde Constraints
暫譯: 帶有偏微分方程約束的優化
Hinze, Michael, Pinnau, Rene, Ulbrich, Michael
- 出版商: Springer
- 出版日期: 2010-10-28
- 售價: $5,910
- 貴賓價: 9.5 折 $5,615
- 語言: 英文
- 頁數: 270
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9048180031
- ISBN-13: 9789048180035
-
相關分類:
微積分 Calculus、數值分析 Numerical-analysis
海外代購書籍(需單獨結帳)
相關主題
商品描述
Solving optimization problems subject to constraints given in terms of partial d- ferential equations (PDEs) with additional constraints on the controls and/or states is one of the most challenging problems in the context of industrial, medical and economical applications, where the transition from model-based numerical si- lations to model-based design and optimal control is crucial. For the treatment of such optimization problems the interaction of optimization techniques and num- ical simulation plays a central role. After proper discretization, the number of op- 3 10 timization variables varies between 10 and 10 . It is only very recently that the enormous advances in computing power have made it possible to attack problems of this size. However, in order to accomplish this task it is crucial to utilize and f- ther explore the speci?c mathematical structure of optimization problems with PDE constraints, and to develop new mathematical approaches concerning mathematical analysis, structure exploiting algorithms, and discretization, with a special focus on prototype applications. The present book provides a modern introduction to the rapidly developing ma- ematical ?eld of optimization with PDE constraints. The ?rst chapter introduces to the analytical background and optimality theory for optimization problems with PDEs. Optimization problems with PDE-constraints are posed in in?nite dim- sional spaces. Therefore, functional analytic techniques, function space theory, as well as existence- and uniqueness results for the underlying PDE are essential to study the existence of optimal solutions and to derive optimality conditions.
商品描述(中文翻譯)
解決受限於偏微分方程(PDEs)的優化問題,並對控制和/或狀態施加額外約束,是工業、醫療和經濟應用中最具挑戰性的問題之一。在這些應用中,從基於模型的數值模擬過渡到基於模型的設計和最佳控制至關重要。處理這類優化問題時,優化技術與數值模擬的互動扮演著核心角色。在適當的離散化之後,優化變數的數量介於10和10之間。直到最近,計算能力的巨大進步才使得攻克這類規模的問題成為可能。然而,為了完成這項任務,利用並進一步探索具有PDE約束的優化問題的特定數學結構至關重要,並開發新的數學方法,涉及數學分析、結構利用算法和離散化,特別關注原型應用。本書提供了對快速發展的具有PDE約束的優化數學領域的現代介紹。第一章介紹了具有PDE的優化問題的分析背景和最優性理論。具有PDE約束的優化問題被提出在無限維空間中。因此,函數分析技術、函數空間理論以及基礎PDE的存在性和唯一性結果對於研究最優解的存在性和推導最優性條件是必不可少的。