Core Data Analysis: Summarization, Correlation, and Visualization
暫譯: 核心數據分析:摘要、相關性與視覺化

Mirkin, Boris

  • 出版商: Springer
  • 出版日期: 2019-04-18
  • 售價: $2,990
  • 貴賓價: 9.5$2,841
  • 語言: 英文
  • 頁數: 524
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3030002705
  • ISBN-13: 9783030002701
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This text examines the goals of data analysis with respect to enhancing knowledge, and identifies data summarization and correlation analysis as the core issues. Data summarization, both quantitative and categorical, is treated within the encoder-decoder paradigm bringing forward a number of mathematically supported insights into the methods and relations between them. Two Chapters describe methods for categorical summarization: partitioning, divisive clustering and separate cluster finding and another explain the methods for quantitative summarization, Principal Component Analysis and PageRank.

Features:

- An in-depth presentation of K-means partitioning including a corresponding Pythagorean decomposition of the data scatter.

- Advice regarding such issues as clustering of categorical and mixed scale data, similarity and network data, interpretation aids, anomalous clusters, the number of clusters, etc.

- Thorough attention to data-driven modelling including a number of mathematically stated relations between statistical and geometrical concepts including those between goodness-of-fit criteria for decision trees and data standardization, similarity and consensus clustering, modularity clustering and uniform partitioning.

New edition highlights:

- Inclusion of ranking issues such as Google PageRank, linear stratification and tied rankings median, consensus clustering, semi-average clustering, one-cluster clustering

- Restructured to make the logics more straightforward and sections self-contained

Core Data Analysis: Summarization, Correlation and Visualization is aimed at those who are eager to participate in developing the field as well as appealing to novices and practitioners.

商品描述(中文翻譯)

這段文字探討了數據分析的目標,特別是增強知識的方面,並將數據摘要和相關性分析確定為核心議題。數據摘要,包括定量和類別的摘要,採用編碼器-解碼器範式進行處理,提出了一些數學支持的見解,關於這些方法及其之間的關係。兩章描述了類別摘要的方法:分區、分裂聚類和獨立聚類發現,另一章則解釋了定量摘要的方法,包括主成分分析(Principal Component Analysis)和PageRank。

特色:
- 深入介紹K-means分區,包括數據散佈的相應畢氏分解。
- 提供有關類別和混合尺度數據的聚類、相似性和網絡數據、解釋輔助工具、異常聚類、聚類數量等問題的建議。
- 徹底關注數據驅動建模,包括統計和幾何概念之間的多個數學關係,包括決策樹的擬合優度標準與數據標準化、相似性和共識聚類、模塊化聚類和均勻分區之間的關係。

新版本亮點:
- 包含排名問題,如Google PageRank、線性分層和並列排名中位數、共識聚類、半平均聚類、單聚類聚類。
- 結構重組,使邏輯更為簡單明瞭,各部分自成一體。

《核心數據分析:摘要、相關性與可視化》旨在吸引那些渴望參與該領域發展的人,同時也對新手和實踐者具有吸引力。

作者簡介

Boris Mirkin holds a PhD in Computer Science (Mathematics) and DSc in Systems Analysis (Technology) degrees from Russian Universities. Between 1991-2010, he had long-term visiting appointments in France, Germany, USA, and a teaching appointment as a Professor of Computer Science at Birkbeck University of London, UK (2000-2010).

He develops methods for clustering and interpretation of complex data within the "data recovery" perspective. Currently these approaches are being extended to automation of text analysis problems including the development and use of hierarchical ontologies. He has published a hundred refereed papers and a dozen books, of which the latest are: "Clustering: A Data Recovery Approach" (Chapman and Hall/CRC Press, 2012) and a textbook "Introductory Data Analysis" (In Russian, URAIT Publishers, Moscow, 2016).

作者簡介(中文翻譯)

博里斯·米爾金(Boris Mirkin)擁有俄羅斯大學的計算機科學(數學)博士學位和系統分析(技術)科學博士學位。在1991年至2010年間,他在法國、德國、美國擔任長期訪問職位,並於2000年至2010年間擔任英國倫敦比爾克貝克大學的計算機科學教授。

他開發了在「數據恢復」視角下對複雜數據進行聚類和解釋的方法。目前,這些方法正在擴展到文本分析問題的自動化,包括層次本體的開發和使用。他已發表了一百篇經過審核的論文和十幾本書籍,其中最新的包括《聚類:數據恢復方法》(Chapman and Hall/CRC Press, 2012)和一本教科書《入門數據分析》(俄文,URAIT出版社,莫斯科,2016)。

最後瀏覽商品 (20)