Statistical Signal Processing
暫譯: 統計信號處理

T. Chonavel

買這商品的人也買了...

相關主題

商品描述

Modern information systems must handle huge amounts of data having varied natural or technological origins. Automated processing of these increasing loads of signals requires training specialists capable of formalising the problems encountered. This book aims at supplying a formalised, concise presentation of the basis of statistical signal processing. Similar interest is directed to aspects related to signal modelling and to signal estimation. So, in order to supply the reader with the desirable theoretical bases and to allow him to make progress in the discipline, most of the results presented here are carefully justified. First, the representation of random signals in the Fourier domain and their filtering are considered. These tools enable linear prediction theory and related classical filtering techniques to be addressed in a simple way. Then the spectrum identification problem is presented as a first step toward spectrum estimation, which is studied in the non-parametric and in the parametric frameworks. The last chapters introduce synthetically further advanced techniques that will enable the reader to solve signal processing problems of a general nature. Rather than supplying an exhaustive description of existing techniques, this book is designed for students, scientists and research engineers interested in statistical signal processing who need to acquire the necessary bases to address the specific problems that they may be faced with, as well as the corresponding literature. The CD-ROM contains MATLABÊ<ha programs in HTML format and is intended to provide simulation examples (program listings + simulation results) In addition, it also presents some basics of probability.

Contents

Introduction.- Random Processes.- Power Spectrum.- Spectral Representation.- Filtering.- Important Particular Processes.- Non-linear Transforms of Processes.- Linear Prediction.- Particular Filtering Techniques.- Rational Spectral Densities.- Spectral Identification.- Non-parametric Spectral Estimation.- Parametric Spectral Estimation.- Higher-order Statistics.- Bayesian and MCMC Methods.- Adaptive Estimation.- Appendices A-Z.

商品描述(中文翻譯)

現代資訊系統必須處理大量來自不同自然或技術來源的數據。自動化處理這些不斷增加的信號負載需要訓練專業人員,能夠將所遇到的問題形式化。本書旨在提供統計信號處理基礎的形式化、簡明的介紹。類似的興趣也指向與信號建模和信號估計相關的方面。因此,為了向讀者提供所需的理論基礎並使其在該學科中取得進展,本書中大多數結果都經過仔細的論證。首先,考慮隨機信號在傅立葉域中的表示及其過濾。這些工具使得線性預測理論及相關的經典過濾技術能夠以簡單的方式進行探討。接著,頻譜識別問題被提出,作為頻譜估計的第一步,該問題在非參數和參數框架中進行研究。最後幾章簡要介紹了進一步的高級技術,這將使讀者能夠解決一般性信號處理問題。本書並非旨在提供現有技術的詳盡描述,而是為對統計信號處理感興趣的學生、科學家和研究工程師設計,幫助他們獲得解決可能面臨的具體問題所需的基礎知識,以及相應的文獻。隨書附贈的CD-ROM包含以HTML格式編寫的MATLAB程式,旨在提供模擬範例(程式清單 + 模擬結果)。此外,它還介紹了一些概率的基本知識。

目錄
引言.- 隨機過程.- 功率譜.- 頻譜表示.- 過濾.- 重要的特定過程.- 過程的非線性變換.- 線性預測.- 特定過濾技術.- 有理頻譜密度.- 頻譜識別.- 非參數頻譜估計.- 參數頻譜估計.- 高階統計.- 貝葉斯和MCMC方法.- 自適應估計.- 附錄A-Z.