Formal Languages, Automata and Numeration Systems (ISTE)
暫譯: 形式語言、自動機與計數系統 (ISTE)
Michel Rigo
- 出版商: Wiley
- 出版日期: 2014-11-17
- 售價: $5,970
- 貴賓價: 9.5 折 $5,672
- 語言: 英文
- 頁數: 338
- 裝訂: Hardcover
- ISBN: 1848216157
- ISBN-13: 9781848216150
海外代購書籍(需單獨結帳)
相關主題
商品描述
Combinatorics on words deals with problems that can be stated in a non-commutative monoid, such as subword complexity of finite or infinite words, construction and properties of infinite words, unavoidable regularities or patterns. When considering some numeration systems, any integer can be represented as a finite word over an alphabet of digits. This simple observation leads to the study of the relationship between the arithmetical properties of the integers and the syntactical properties of the corresponding representations. One of the most profound results in this direction is given by the celebrated theorem by Cobham. Surprisingly, a recent extension of this result to complex numbers led to the famous Four Exponentials Conjecture. This is just one example of the fruitful relationship between formal language theory (including the theory of automata) and number theory.
Contents to include: • algebraic structures, homomorphisms, relations, free monoid • finite words, prefixes, suffixes, factors, palindromes
• periodicity and Fine–Wilf theorem
• infinite words are sequences over a finite alphabet
• properties of an ultrametric distance, example of the p-adic norm
• topology of the set of infinite words
• converging sequences of infinite and finite words, compactness argument
• iterated morphism, coding, substitutive or morphic words
• the typical example of the Thue–Morse word
• the Fibonacci word, the Mex operator, the n-bonacci words
• wordscomingfromnumbertheory(baseexpansions,continuedfractions,...) • the taxonomy of Lindenmayer systems
• S-adic sequences, Kolakoski word
• repetition in words, avoiding repetition, repetition threshold
• (complete) de Bruijn graphs
• concepts from computability theory and decidability issues
• Post correspondence problem and application to mortality of matrices
• origins of combinatorics on words
• bibliographic notes
• languages of finite words, regular languages
• factorial, prefix/suffix closed languages, trees and codes
• unambiguous and deterministic automata, Kleene’s theorem
• growth function of regular languages
• non-deterministic automata and determinization
• radix order, first word of each length and decimation of a regular language
• the theory of the minimal automata
• an introduction to algebraic automata theory, the syntactic monoid and the
syntactic complexity
• star-free languages and a theorem of Schu ̈tzenberger
• rational formal series and weighted automata
• context-free languages, pushdown automata and grammars
• growth function of context-free languages, Parikh’s theorem
• some decidable and undecidable problems in formal language theory
• bibliographic notes
• factor complexity, Morse–Hedlund theorem
• arithmetic complexity, Van Der Waerden theorem, pattern complexity • recurrence, uniform recurrence, return words
• Sturmian words, coding of rotations, Kronecker’s theorem
• frequencies of letters, factors and primitive morphism
• critical exponent
• factor complexity of automatic sequences
• factor complexity of purely morphic sequences
• primitive words, conjugacy, Lyndon word
• abelianisation and abelian complexity
• bibliographic notes
• automatic sequences, equivalent definitions
• a theorem of Cobham, equivalence of automatic sequences with constant
length morphic sequences
• a few examples of well-known automatic sequences
• about Derksen’s theorem
• some morphic sequences are not automatic
• abstract numeration system and S-automatic sequences
• k − ∞-automatic sequences
• bibliographic notes
• numeration systems, greedy algorithm
• positional numeration systems, recognizable sets of integers
• divisibility criterion and recognizability of N
• properties of k-recognizable sets of integers, ratio and difference of consec-
utive elements: syndeticity
• integer base and Cobham’s theorem on the base dependence of the recog-
nizability
• non-standard numeration systems based on sequence of integers
• linear recurrent sequences, Loraud and Hollander results
• Frougny’s normalization result and addition
• morphic numeration systems/sets of integers whose characteristic sequence
is morphic
• towards a generalization of Cobham’s theorem
• a few words on the representation of real numbers, β-integers, finiteness
properties
• automata associated with Parry numbers and numeration systems
• bibliographic notes
First order logic
• Presburger arithmetic and decidable theory
• Muchnik’s characterization of semi-linear sets
• Bu ̈chi’s theorem: k-recognizable sets are k-definable • extension to Pisot numeration systems
• extension to real numbers
• decidability issues for numeration systems
• applications in combinatorics on words
商品描述(中文翻譯)
《形式語言、自動機與計數系統》為讀者提供了與形式語言理論、字串組合學或計數系統相關的研究回顧,例如 Words、DLT(語言理論的發展)、ICALP、MFCS(計算機科學的數學基礎)、Mons 理論計算機科學日、計數、CANT(組合學、自動機與數論)。
字串組合學處理可以在非交換單元中表述的問題,例如有限或無限字串的子字串複雜度、無限字串的構造與性質、不可避免的規律或模式。考慮某些計數系統時,任何整數都可以表示為一個由數字字母表組成的有限字串。這一簡單的觀察引導我們研究整數的算術性質與相應表示的語法性質之間的關係。在這方面最深刻的結果之一是由 Cobham 提出的著名定理。令人驚訝的是,這一結果最近擴展到複數,導致了著名的四個指數猜想。這只是形式語言理論(包括自動機理論)與數論之間豐富關係的一個例子。
內容包括:
• 代數結構、同態、關係、自由單元
• 有限字串、前綴、後綴、因子、迴文
• 週期性與 Fine–Wilf 定理
• 無限字串是有限字母表上的序列
• 超度量距離的性質,p-adic 範數的例子
• 無限字串集合的拓撲
• 無限與有限字串的收斂序列,緊湊性論證
• 迭代形態、編碼、替代或形態字串
• Thue–Morse 字串的典型例子
• Fibonacci 字串、Mex 操作符、n-bonacci 字串
• 來自數論的字串(基數展開、連分數等)
• Lindenmayer 系統的分類
• S-adic 序列、Kolakoski 字串
• 字串中的重複、避免重複、重複閾值
• (完整的)de Bruijn 圖
• 可計算性理論的概念與可決性問題
• Post 對應問題及其在矩陣生死問題中的應用
• 字串組合學的起源
• 參考文獻
• 有限字串的語言、正則語言
• 階乘、前綴/後綴封閉語言、樹與編碼
• 無歧義與確定性自動機、Kleene 定理
• 正則語言的增長函數
• 非確定性自動機與確定化
• 基數順序、每個長度的第一個字串與正則語言的減少
• 最小自動機的理論
• 代數自動機理論簡介、語法單元與語法複雜度
• 無星語言與 Schu ̈tzenberger 定理
• 有理形式級數與加權自動機
• 上下文無關語言、下推自動機與文法
• 上下文無關語言的增長函數、Parikh 定理
• 形式語言理論中的一些可決與不可決問題
• 參考文獻
• 因子複雜度、Morse–Hedlund 定理
• 算術複雜度、Van Der Waerden 定理、模式複雜度
• 重複、均勻重複、返回字串
• Sturmian 字串、旋轉的編碼、Kronecker 定理
• 字母的頻率、因子與原始形態
• 臨界指數
• 自動序列的因子複雜度
• 純形態序列的因子複雜度
• 原始字串、共軛、Lyndon 字串
• 阿貝爾化與阿貝爾複雜度
• 參考文獻
• 自動序列、等價定義
• Cobham 定理、自動序列與常長度形態序列的等價
• 幾個著名自動序列的例子
• 關於 Derksen 定理
• 一些形態序列不是自動的
• 抽象計數系統與 S-自動序列
• k − ∞-自動序列
• 參考文獻
• 計數系統、貪婪算法
• 位置計數系統、可識別的整數集合
• 可除性標準與 N 的可識別性
• k-可識別整數集合的性質、連續元素的比率與差異:聯合性
• 整數基數與 Cobham 定理關於可識別性的基數依賴性
• 基於整數序列的非標準計數系統
• 線性遞歸序列、Loraud 與 Hollander 的結果
• Frougny 的正規化結果與加法
• 形態計數系統/整數集合,其特徵序列為形態
• 朝向 Cobham 定理的推廣
• 關於實數的表示、β 整數、有限性質的幾句話
• 與 Parry 數字及計數系統相關的自動機
• 參考文獻
• 一階邏輯
• Presburger 算術與可決理論
• Muchnik 對半線性集合的特徵
• Bu ̈chi 定理:k-可識別集合是 k-可定義的
• 擴展到 Pisot 計數系統
• 擴展到實數
• 計數系統的可決性問題
• 在字串組合學中的應用