Rational Points on Elliptic Curves (Undergraduate Texts in Mathematics)
暫譯: 橢圓曲線上的有理點(數學本科教材)
Joseph H. Silverman, John T. Tate
- 出版商: Springer
- 出版日期: 2015-06-24
- 售價: $2,470
- 貴賓價: 9.5 折 $2,347
- 語言: 英文
- 頁數: 332
- 裝訂: Hardcover
- ISBN: 331918587X
- ISBN-13: 9783319185873
海外代購書籍(需單獨結帳)
相關主題
商品描述
The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This volume stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry.
Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of Rational Points on Elliptic Curves. Topics covered include the geometry and group structure of elliptic curves, the Nagell–Lutz theorem describing points of finite order, the Mordell–Weil theorem on the finite generation of the group of rational points, the Thue–Siegel theorem on the finiteness of the set of integer points, theorems on counting points with coordinates in finite fields, Lenstra's elliptic curve factorization algorithm, and a discussion of complex multiplication and the Galois representations associated to torsion points. Additional topics new to the second edition include an introduction to elliptic curve cryptography and a brief discussion of the stunning proof of Fermat's Last Theorem by Wiles et al. via the use of elliptic curves.
商品描述(中文翻譯)
橢圓曲線的理論涉及代數、幾何、分析和數論的愉悅結合。本書強調這種相互作用,發展基本理論,從而為高年級本科生提供機會,欣賞現代數學的統一性。同時,書中努力僅使用本科課程中常見的方法和結果。這種可及性、非正式的寫作風格以及豐富的練習題,使得《橢圓曲線上的有理點》成為所有對學習丟番圖方程和算術幾何感興趣的學生的理想入門書籍。
最具體地說,橢圓曲線是二變數立方多項式的零點集合。如果該多項式具有有理係數,那麼可以要求描述那些坐標為整數或有理數的零點。正是這個數論問題是《橢圓曲線上的有理點》的主要主題。涵蓋的主題包括橢圓曲線的幾何和群結構、描述有限階點的Nagell–Lutz定理、有理點群的有限生成的Mordell–Weil定理、整數點集合的有限性Thue–Siegel定理、計算有限域中坐標點的定理、Lenstra的橢圓曲線因式分解算法,以及對複乘法和與扭點相關的伽羅瓦表示的討論。第二版新增的主題包括橢圓曲線密碼學的介紹,以及對Wiles等人利用橢圓曲線驚人證明費馬最後定理的簡要討論。